CT-based deep learning model to differentiate invasive pulmonary adenocarcinomas appearing as subsolid nodules among surgical candidates: comparison of the diagnostic performance with a size-based logistic model and radiologists

医学 神经组阅片室 介入放射学 放射科 逻辑回归 超声波 肺孤立结节 计算机断层摄影术 内科学 神经学 精神科
作者
Hyungjin Kim,Dongheon Lee,Woo Sang Cho,Jung Chan Lee,Jin Mo Goo,Hee Chan Kim,Chang Min Park
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:30 (6): 3295-3305 被引量:39
标识
DOI:10.1007/s00330-019-06628-4
摘要

To evaluate the deep learning models for differentiating invasive pulmonary adenocarcinomas (IACs) among subsolid nodules (SSNs) considered for resection in a retrospective diagnostic cohort in comparison with a size-based logistic model and expert radiologists. This study included 525 patients (309 women; median, 62 years) to develop models, and an independent cohort of 101 patients (57 women; median, 66 years) was used for validation. A size-based logistic model and deep learning models using 2.5-dimension (2.5D) and three-dimension (3D) CT images were developed to discriminate IAC from less invasive pathologies. Overall performance, discrimination, and calibration were assessed. Diagnostic performances of the three thoracic radiologists were compared with those of the deep learning model. The overall performances of the deep learning models (Brier score, 0.122 for the 2.5D DenseNet and 0.121 for the 3D DenseNet) were superior to those of the size-based logistic model (Brier score, 0.198). The area under the receiver operating characteristic curve (AUC) of the 2.5D DenseNet (0.921) was significantly higher than that of the 3D DenseNet (0.835; p = 0.037) and the size-based logistic model (0.836; p = 0.009). At equally high sensitivities of 90%, the 2.5D DenseNet showed significantly higher specificity (88.2%; all p < 0.05) and positive predictive value (97.4%; all p < 0.05) than other models. Model calibration was poor for all models (all p < 0.05). The 2.5D DenseNet had a comparable performance with the radiologists (AUC, 0.848–0.910). The 2.5D DenseNet model could be used as a highly sensitive and specific diagnostic tool to differentiate IACs among SSNs for surgical candidates. • The deep learning model developed using 2.5D DenseNet showed higher overall performance and discrimination than the size-based logistic model for the differentiation of invasive adenocarcinomas among subsolid nodules for surgical candidates. • The 2.5D DenseNet demonstrated a thoracic radiologist–level diagnostic performance and had higher specificity (88.2%) at equal sensitivities (90%) than the size-based logistic model (specificity, 52.9%). • The 2.5D DenseNet could be used to reduce potential overtreatment for the indolent subsolid nodules or to select candidates for sublobar resection instead of the standard lobectomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
往往超可爱完成签到 ,获得积分10
5秒前
米米发布了新的文献求助10
5秒前
10秒前
jinx123456完成签到,获得积分10
11秒前
18秒前
大尾巴完成签到 ,获得积分10
19秒前
纵念发布了新的文献求助10
21秒前
23秒前
研友_Y59785应助光亮的初曼采纳,获得10
25秒前
27秒前
bbsheng发布了新的文献求助10
29秒前
30秒前
纵念完成签到,获得积分10
31秒前
handsomecat完成签到,获得积分10
34秒前
追寻凌晴发布了新的文献求助30
34秒前
124完成签到,获得积分10
35秒前
梅子完成签到,获得积分10
40秒前
畅跑daily完成签到,获得积分10
41秒前
爆米花应助邀月采纳,获得10
43秒前
香蕉觅云应助聪慧雪糕采纳,获得10
44秒前
yang应助追寻凌晴采纳,获得10
47秒前
难过大神完成签到,获得积分10
50秒前
51秒前
51秒前
zhang完成签到,获得积分10
52秒前
阿娟儿发布了新的文献求助10
52秒前
53秒前
聪慧雪糕发布了新的文献求助10
55秒前
庸人自扰完成签到,获得积分10
55秒前
Chen发布了新的文献求助10
56秒前
Orange应助虚幻的安柏采纳,获得10
56秒前
1分钟前
光亮的初曼完成签到,获得积分20
1分钟前
充电宝应助半山采纳,获得10
1分钟前
1分钟前
zy完成签到,获得积分10
1分钟前
肥四发布了新的文献求助10
1分钟前
顾矜应助mkljl采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780433
求助须知:如何正确求助?哪些是违规求助? 3325851
关于积分的说明 10224474
捐赠科研通 3040916
什么是DOI,文献DOI怎么找? 1669131
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758653