Deep learning-based method for SEM image segmentation in mineral characterization, an example from Duvernay Shale samples in Western Canada Sedimentary Basin

油页岩 像素 地质学 人工智能 模式识别(心理学) 分割 图像分割 特征(语言学) 矿物学 计算机科学 古生物学 语言学 哲学
作者
Zhuoheng Chen,Xiaojun Liu,Jijin Yang,E C Little,Yu Zhou
出处
期刊:Computers & Geosciences [Elsevier BV]
卷期号:138: 104450-104450 被引量:93
标识
DOI:10.1016/j.cageo.2020.104450
摘要

Texture-based feature extraction and object segmentation are challenging in image processing. In this study, the U-Net architecture developed for biomedical image analysis was used to evaluate geologic characteristics depicted within scanning electron microscope (SEM) images of shale samples. With a revised weight function, the U-Net architecture allowed for effective discrimination of clay aggregates mixed with matrix mineral particles and organic matter (OM). In training, a local variability weight based on spatial statistics was used to enhance the contrast between features across boundary in the loss function of U-Net system optimization, thereby improving the ability of U-Net to distinguish the geologic features specific to our research needs. The Tensorflow neural network library was used to create semantic segmentation and feature extraction models in mineral identification. In the application example of the Devonian Duvernay shale study, we prepared 8000 randomly sliced image cuts (256 × 256 pixels) from four masked image tiles (6144 × 6144 pixels) with tagged feature objects, among which 6400 are for training and the remaining 1600 held image slices for validation. In the validation, the average of intersection over union (IOU) reaches 91.7%. The trained model approved by validation was used for clay aggregate segmentation and mineral classification. Three hundred SEM image tiles of source rock samples from different maturities in the Duvernay Formation were processed using the proposed workflow. The results show that the clay aggregates are clearly separated from other matrix mineral particles with acceptable boundaries, although both exhibit indistinguishable grey-level pixels. This approach demonstrates that texture-based deep learning feature extraction is feasible, cost-effective and timely, and can help geoscientists gain new insights by quantitatively analyzing specific geological characteristics and features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hmhu发布了新的文献求助10
1秒前
武装大脑发布了新的文献求助10
1秒前
2秒前
PhD-SCAU完成签到,获得积分10
3秒前
4秒前
zhy完成签到,获得积分10
4秒前
xiao完成签到 ,获得积分10
6秒前
调皮橘子发布了新的文献求助10
7秒前
11111发布了新的文献求助10
8秒前
HiDasiy完成签到 ,获得积分10
8秒前
巫雍完成签到,获得积分20
8秒前
10秒前
10秒前
tangyong完成签到,获得积分0
11秒前
丽优发布了新的文献求助10
11秒前
12秒前
smile完成签到 ,获得积分10
13秒前
15秒前
充电宝应助111采纳,获得10
15秒前
15秒前
16秒前
李健应助开放朋友采纳,获得10
17秒前
袁大头发布了新的文献求助10
17秒前
accept小猫发布了新的文献求助10
18秒前
20秒前
LiXiaomeng发布了新的文献求助10
21秒前
雷霆康康完成签到,获得积分10
21秒前
哈哈哈66发布了新的文献求助10
21秒前
桐桐应助有魅力的安露采纳,获得10
22秒前
周小熊发布了新的文献求助50
23秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
彭于晏应助科研通管家采纳,获得10
23秒前
23秒前
乐乐应助科研通管家采纳,获得10
23秒前
乐乐应助科研通管家采纳,获得10
23秒前
shilichen应助科研通管家采纳,获得20
24秒前
shilichen应助科研通管家采纳,获得20
24秒前
bkagyin应助科研通管家采纳,获得10
24秒前
上官若男应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4768422
求助须知:如何正确求助?哪些是违规求助? 4105077
关于积分的说明 12698466
捐赠科研通 3823099
什么是DOI,文献DOI怎么找? 2109948
邀请新用户注册赠送积分活动 1134373
关于科研通互助平台的介绍 1015547