已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning-based method for SEM image segmentation in mineral characterization, an example from Duvernay Shale samples in Western Canada Sedimentary Basin

油页岩 像素 地质学 人工智能 模式识别(心理学) 分割 图像分割 特征(语言学) 矿物学 计算机科学 语言学 哲学 古生物学
作者
Zhuoheng Chen,Xiaojun Liu,Jijin Yang,E C Little,Yu Zhou
出处
期刊:Computers & Geosciences [Elsevier BV]
卷期号:138: 104450-104450 被引量:93
标识
DOI:10.1016/j.cageo.2020.104450
摘要

Texture-based feature extraction and object segmentation are challenging in image processing. In this study, the U-Net architecture developed for biomedical image analysis was used to evaluate geologic characteristics depicted within scanning electron microscope (SEM) images of shale samples. With a revised weight function, the U-Net architecture allowed for effective discrimination of clay aggregates mixed with matrix mineral particles and organic matter (OM). In training, a local variability weight based on spatial statistics was used to enhance the contrast between features across boundary in the loss function of U-Net system optimization, thereby improving the ability of U-Net to distinguish the geologic features specific to our research needs. The Tensorflow neural network library was used to create semantic segmentation and feature extraction models in mineral identification. In the application example of the Devonian Duvernay shale study, we prepared 8000 randomly sliced image cuts (256 × 256 pixels) from four masked image tiles (6144 × 6144 pixels) with tagged feature objects, among which 6400 are for training and the remaining 1600 held image slices for validation. In the validation, the average of intersection over union (IOU) reaches 91.7%. The trained model approved by validation was used for clay aggregate segmentation and mineral classification. Three hundred SEM image tiles of source rock samples from different maturities in the Duvernay Formation were processed using the proposed workflow. The results show that the clay aggregates are clearly separated from other matrix mineral particles with acceptable boundaries, although both exhibit indistinguishable grey-level pixels. This approach demonstrates that texture-based deep learning feature extraction is feasible, cost-effective and timely, and can help geoscientists gain new insights by quantitatively analyzing specific geological characteristics and features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qaz123发布了新的文献求助10
1秒前
小半完成签到,获得积分10
3秒前
桐桐应助大意的鹭洋采纳,获得30
4秒前
5秒前
饱满的开山完成签到,获得积分10
5秒前
6秒前
万能图书馆应助张思琪采纳,获得10
8秒前
9秒前
123完成签到,获得积分20
9秒前
所所应助半岛学习盒采纳,获得30
10秒前
黄伊若完成签到 ,获得积分10
10秒前
banbieshenlu发布了新的文献求助10
10秒前
cdercder应助乔心采纳,获得10
11秒前
cdercder应助乔心采纳,获得10
11秒前
iNk应助乔心采纳,获得10
11秒前
赘婿应助乔心采纳,获得10
11秒前
天天快乐应助乔心采纳,获得10
11秒前
11秒前
彭彭发布了新的文献求助50
12秒前
12秒前
OCDer应助wsh采纳,获得60
12秒前
Ayumi完成签到 ,获得积分20
12秒前
13秒前
14秒前
郑同学发布了新的文献求助10
15秒前
姜宇航完成签到 ,获得积分10
16秒前
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
852应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
NexusExplorer应助fafafa采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
小二郎应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
18秒前
深情安青应助科研通管家采纳,获得10
18秒前
张思琪发布了新的文献求助10
18秒前
18秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Wh-exclamatives, Imperatives and Wh-questions 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827058
求助须知:如何正确求助?哪些是违规求助? 3369299
关于积分的说明 10455578
捐赠科研通 3088953
什么是DOI,文献DOI怎么找? 1699543
邀请新用户注册赠送积分活动 817382
科研通“疑难数据库(出版商)”最低求助积分说明 770208