Dynamic Spectral Graph Convolution Networks with Assistant Task Training for Early MCI Diagnosis

计算机科学 图形 人工智能 培训(气象学) 卷积(计算机科学) 任务(项目管理) 理论计算机科学 算法 人工神经网络 物理 气象学 经济 管理
作者
Xiaodan Xing,Qingfeng Li,Hao Wei,Minqing Zhang,Yiqiang Zhan,Xiang Sean Zhou,Zhong Xue,Feng Shi
出处
期刊:Lecture Notes in Computer Science 卷期号:: 639-646 被引量:38
标识
DOI:10.1007/978-3-030-32251-9_70
摘要

Functional brain connectome, also known as inter-regional functional connectivity (FC) matrix, is recently considered providing decisive markers for early mild cognitive impairment (eMCI). However, in most existing methods, vectorized static FC matrices and some “off-the-shelf” classifiers were used, which may lead to a deprecation of both spatial and temporal information and thus compromise the diagnosis performance. In this paper, we propose dynamic spectral graph convolution networks (DS-GCNs) for early MCI diagnosis using functional MRI (fMRI). First, a dynamic brain graph is constructed so that the connectivity strengths (edges) are derived by time-varying correlations of fMRI signals, and the node signals are computed from T1 MR images. Then, the spectral graph convolution (GC) based long short term memory (LSTM) network is employed to process long range temporal information from the dynamic graphs. Finally, instead of directly using demographic information as additional inputs as in the conventional methods, we proposed to predict gender and age of each subject as assistant tasks, which in turn captures useful network features and facilitates the main task of eMCI classification; we refer this strategy as assistant task training. Experiments on 294 training and 74 testing subjects show that eMCI classification results achieved \(79.7\%\) accuracy (with \(86.5\%\) sensitivity and \(73.0\%\) specificity) and outperformed the state-of-the-art methods. Notably, the proposed method could be further extended to other Connectomics studies, where the graphs are computed through white matter fiber connections or gray matter characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
四亿发布了新的文献求助30
刚刚
Liiii发布了新的文献求助10
1秒前
橘子完成签到,获得积分10
1秒前
可爱的函函应助甜北枳采纳,获得10
1秒前
浮游应助张11采纳,获得10
1秒前
深情安青应助钟梓袄采纳,获得10
2秒前
邱邱发布了新的文献求助10
2秒前
魏杨洋发布了新的文献求助10
4秒前
4秒前
4秒前
xxfsx应助逆流的鱼采纳,获得10
5秒前
5秒前
5秒前
桐桐应助tttdddzzz采纳,获得10
6秒前
TK完成签到,获得积分10
6秒前
酷波er应助chen采纳,获得10
7秒前
sssdd完成签到,获得积分10
7秒前
TT完成签到,获得积分10
7秒前
JamesPei应助郭郭采纳,获得20
8秒前
8秒前
8秒前
姜茶发布了新的文献求助10
9秒前
Cici发布了新的文献求助10
9秒前
可爱的函函应助春儿采纳,获得10
9秒前
坦率绯发布了新的文献求助10
10秒前
13秒前
Evnnnn完成签到,获得积分10
14秒前
14秒前
orixero应助欢呼怜烟采纳,获得10
14秒前
木木三完成签到,获得积分10
14秒前
浮游应助呼啦采纳,获得10
15秒前
15秒前
JamesPei应助曹问芙采纳,获得10
15秒前
上官若男应助文继遥采纳,获得10
16秒前
聪慧的问筠完成签到 ,获得积分10
16秒前
16秒前
无花果应助Booksiy2采纳,获得10
16秒前
牛牛李完成签到,获得积分10
16秒前
17秒前
linkman发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5183562
求助须知:如何正确求助?哪些是违规求助? 4369795
关于积分的说明 13607666
捐赠科研通 4221646
什么是DOI,文献DOI怎么找? 2315351
邀请新用户注册赠送积分活动 1313985
关于科研通互助平台的介绍 1262859