Dynamic Spectral Graph Convolution Networks with Assistant Task Training for Early MCI Diagnosis

计算机科学 图形 人工智能 培训(气象学) 卷积(计算机科学) 任务(项目管理) 理论计算机科学 算法 人工神经网络 物理 管理 气象学 经济
作者
Xiaodan Xing,Qingfeng Li,Hao Wei,Minqing Zhang,Yiqiang Zhan,Xiang Sean Zhou,Zhong Xue,Feng Shi
出处
期刊:Lecture Notes in Computer Science 卷期号:: 639-646 被引量:38
标识
DOI:10.1007/978-3-030-32251-9_70
摘要

Functional brain connectome, also known as inter-regional functional connectivity (FC) matrix, is recently considered providing decisive markers for early mild cognitive impairment (eMCI). However, in most existing methods, vectorized static FC matrices and some “off-the-shelf” classifiers were used, which may lead to a deprecation of both spatial and temporal information and thus compromise the diagnosis performance. In this paper, we propose dynamic spectral graph convolution networks (DS-GCNs) for early MCI diagnosis using functional MRI (fMRI). First, a dynamic brain graph is constructed so that the connectivity strengths (edges) are derived by time-varying correlations of fMRI signals, and the node signals are computed from T1 MR images. Then, the spectral graph convolution (GC) based long short term memory (LSTM) network is employed to process long range temporal information from the dynamic graphs. Finally, instead of directly using demographic information as additional inputs as in the conventional methods, we proposed to predict gender and age of each subject as assistant tasks, which in turn captures useful network features and facilitates the main task of eMCI classification; we refer this strategy as assistant task training. Experiments on 294 training and 74 testing subjects show that eMCI classification results achieved \(79.7\%\) accuracy (with \(86.5\%\) sensitivity and \(73.0\%\) specificity) and outperformed the state-of-the-art methods. Notably, the proposed method could be further extended to other Connectomics studies, where the graphs are computed through white matter fiber connections or gray matter characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不知道完成签到,获得积分10
刚刚
abbsdan完成签到 ,获得积分10
1秒前
yxq完成签到 ,获得积分10
2秒前
Xu完成签到,获得积分10
3秒前
科研通AI2S应助CYY采纳,获得10
3秒前
实验菜菜君完成签到 ,获得积分10
5秒前
8秒前
JiaqiLiu发布了新的文献求助10
10秒前
踏实的怜菡完成签到 ,获得积分10
11秒前
keyantong发布了新的文献求助10
13秒前
柒八染完成签到 ,获得积分10
13秒前
大个应助俭朴的一曲采纳,获得10
25秒前
TheQ完成签到 ,获得积分10
27秒前
Akim应助科研通管家采纳,获得10
29秒前
cdercder应助科研通管家采纳,获得10
29秒前
cdercder应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
cdercder应助科研通管家采纳,获得10
29秒前
29秒前
Dabiel1213完成签到,获得积分10
33秒前
brainxue完成签到,获得积分10
34秒前
王旭军发布了新的文献求助10
34秒前
JiaqiLiu完成签到,获得积分20
39秒前
HCCha完成签到,获得积分10
40秒前
000完成签到 ,获得积分10
40秒前
山城完成签到 ,获得积分10
41秒前
123完成签到 ,获得积分10
41秒前
42秒前
Ilyas0525完成签到,获得积分10
42秒前
linci完成签到,获得积分10
44秒前
锋feng完成签到 ,获得积分10
44秒前
Shrimp完成签到 ,获得积分10
46秒前
hggyt发布了新的文献求助10
49秒前
三人水明完成签到 ,获得积分10
50秒前
子虚一尘完成签到,获得积分10
51秒前
一程完成签到 ,获得积分10
54秒前
xdkz完成签到,获得积分10
54秒前
55秒前
jw完成签到,获得积分10
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777699
求助须知:如何正确求助?哪些是违规求助? 3323122
关于积分的说明 10213046
捐赠科研通 3038490
什么是DOI,文献DOI怎么找? 1667412
邀请新用户注册赠送积分活动 798132
科研通“疑难数据库(出版商)”最低求助积分说明 758275