Conductive biomaterials for muscle tissue engineering

肌肉组织 材料科学 组织工程 骨骼肌 导电聚合物 心肌细胞 生物医学工程 人工肌肉 再生(生物学) 碳纳米管 纳米技术 医学 复合材料 解剖 聚合物 计算机科学 细胞生物学 内科学 生物 执行机构 人工智能
作者
Ruonan Dong,X. Peter,Baolin Guo
出处
期刊:Biomaterials [Elsevier]
卷期号:229: 119584-119584 被引量:218
标识
DOI:10.1016/j.biomaterials.2019.119584
摘要

Muscle tissues are soft tissues that are of great importance in force generation, body movements, postural support and internal organ function. Muscle tissue injuries would not only result in the physical and psychological pain and disability to the patient, but also become a severe social problem due to the heavy financial burden they laid on the governments. Current treatments for muscle tissue injuries all have their own severe limitations and muscle tissue engineering has been proposed as a promising therapeutic strategy to treat with this problem. Conductive biomaterials are good candidates as scaffolds in muscle tissue engineering due to their proper conductivity and their promotion on muscle tissue formation. However, a review of conductive biomaterials function in muscle tissue engineering, including the skeletal muscle tissue, cardiac muscle tissue and smooth muscle tissue regeneration is still lacking. Here we reviewed the recent progress of conductive biomaterials for muscle regeneration. The recent synthesis and fabrication methods of conductive scaffolds containing conductive polymers (mainly polyaniline, polypyrrole and poly(3,4-ethylenedioxythiophene), carbon-based nanomaterials (mainly graphene and carbon nanotube), and metal-based biomaterials were systematically discussed, and their application in a variety of forms (such as hydrogels, films, nanofibers, and porous scaffolds) for different kinds of muscle tissues formation (skeletal muscle, cardiac muscle and smooth muscle) were summarized. Furthermore, the mechanism of how the conductive biomaterials affect the muscle tissue formation was discussed and the future development directions were included.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助Ash采纳,获得10
刚刚
弄香发布了新的文献求助10
刚刚
过卿完成签到 ,获得积分10
1秒前
2秒前
llllhh完成签到,获得积分10
2秒前
2秒前
2秒前
薛薛发布了新的文献求助10
2秒前
2秒前
AAAAA完成签到,获得积分10
3秒前
4秒前
蛋疼先生发布了新的文献求助10
4秒前
4秒前
明亮尔阳完成签到,获得积分10
4秒前
4秒前
demoestar发布了新的文献求助30
5秒前
14发布了新的文献求助10
5秒前
丹丹发布了新的文献求助10
6秒前
小AB完成签到 ,获得积分10
6秒前
健壮聪展完成签到,获得积分10
6秒前
6秒前
BEST完成签到 ,获得积分10
7秒前
英姑应助喵2采纳,获得10
7秒前
胡萝卜发布了新的文献求助10
7秒前
7秒前
权荆发布了新的文献求助10
8秒前
wing完成签到 ,获得积分10
8秒前
Ava应助ste11ar采纳,获得30
8秒前
搜集达人应助jun采纳,获得10
9秒前
1234发布了新的文献求助30
9秒前
明亮尔阳发布了新的文献求助10
10秒前
多吃青菜发布了新的文献求助10
10秒前
luodd发布了新的文献求助30
11秒前
12秒前
Lucas应助Flora采纳,获得10
12秒前
yitata发布了新的文献求助10
12秒前
18303826773完成签到,获得积分10
15秒前
852应助仙姝采纳,获得10
15秒前
16秒前
阿坤完成签到,获得积分10
16秒前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
The three stars each: the Astrolabes and related texts 500
Revolutions 400
Diffusion in Solids: Key Topics in Materials Science and Engineering 400
Phase Diagrams: Key Topics in Materials Science and Engineering 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2448385
求助须知:如何正确求助?哪些是违规求助? 2123011
关于积分的说明 5401154
捐赠科研通 1851865
什么是DOI,文献DOI怎么找? 920992
版权声明 562185
科研通“疑难数据库(出版商)”最低求助积分说明 492680