Tubular Structure Segmentation Using Spatial Fully Connected Network with Radial Distance Loss for 3D Medical Images

分割 计算机科学 体素 距离变换 人工智能 中轴 图像分割 计算机视觉 模式识别(心理学) 图像(数学)
作者
Chenglong Wang,Yuichiro Hayashi,Masahiro Oda,Hayato Itoh,Takayuki Kitasaka,Alejandro F. Frangi,Kensaku Mori
出处
期刊:Lecture Notes in Computer Science 卷期号:: 348-356 被引量:25
标识
DOI:10.1007/978-3-030-32226-7_39
摘要

This paper presents a new spatial fully connected tubular network for 3D tubular-structure segmentation. Automatic and complete segmentation of intricate tubular structures remains an unsolved challenge in the medical image analysis. Airways and vasculature pose high demands on medical image analysis as they are elongated fine structures with calibers ranging from several tens of voxels to voxel-level resolution, branching in deeply multi-scale fashion, and with complex topological and spatial relationships. Most machine/deep learning approaches are based on intensity features and ignore spatial consistency across the network that are otherwise distinct in tubular structures. In this work, we introduce 3D slice-by-slice convolutional layers in a U-Net architecture to capture the spatial information of elongated structures. Furthermore, we present a novel loss function, coined radial distance loss, specifically designed for tubular structures. The commonly used methods of cross-entropy loss and generalized Dice loss are sensitive to volumetric variation. However, in tiny tubular structure segmentation, topological errors are as important as volumetric errors. The proposed radial distance loss places higher weight to the centerline, and this weight decreases along the radial direction. Radial distance loss can help networks focus more attention on tiny structures than on thicker tubular structures. We perform experiments on bronchus segmentation on 3D CT images. The experimental results show that compared to the baseline U-Net, our proposed network achieved improvement about 24% and 30% in Dice index and centerline over ratio.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
物理大诗发布了新的文献求助10
刚刚
Fyt00发布了新的文献求助10
1秒前
饶天源发布了新的文献求助10
1秒前
2秒前
林英泽发布了新的文献求助10
3秒前
4秒前
Andrew发布了新的文献求助10
6秒前
深情安青应助菲比采纳,获得10
6秒前
青岛大学发布了新的文献求助10
7秒前
8秒前
IDHNAPHO发布了新的文献求助10
8秒前
9秒前
LXY_YYY完成签到,获得积分10
9秒前
11秒前
胡一一发布了新的文献求助10
11秒前
Andrew完成签到,获得积分10
12秒前
小张在进步完成签到,获得积分10
12秒前
Heyouatpome完成签到,获得积分10
12秒前
阿宁宁完成签到 ,获得积分10
13秒前
失眠奥特曼完成签到,获得积分10
13秒前
大个应助ok的采纳,获得10
13秒前
14秒前
张张张发布了新的文献求助10
14秒前
佳亮辰发布了新的文献求助10
14秒前
15秒前
15秒前
老李猪猪发布了新的文献求助10
17秒前
科研通AI2S应助小布丁采纳,获得10
17秒前
话语完成签到,获得积分10
17秒前
浮游应助回归大群采纳,获得10
20秒前
虚拟的凡波完成签到,获得积分10
21秒前
22秒前
wxyshare应助zz采纳,获得10
22秒前
22秒前
小马甲应助张张张采纳,获得10
23秒前
23秒前
23秒前
略略略发布了新的文献求助10
24秒前
heniancheng完成签到 ,获得积分10
25秒前
赘婿应助老李猪猪采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Athena操作手册 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5041161
求助须知:如何正确求助?哪些是违规求助? 4272167
关于积分的说明 13319795
捐赠科研通 4084419
什么是DOI,文献DOI怎么找? 2234668
邀请新用户注册赠送积分活动 1242198
关于科研通互助平台的介绍 1168942