Deep Learning Application in Spinal Implant Identification

医学 鉴定(生物学) 植入 外科 生物 植物
作者
Hee Kyung Yang,Kwang-Ryeol Kim,Sung-Won Kim,Jeong Young Park
出处
期刊:Spine [Lippincott Williams & Wilkins]
卷期号:46 (5): E318-E324 被引量:7
标识
DOI:10.1097/brs.0000000000003844
摘要

Study design Retrospective observational study. Objective To demonstrate the clinical usefulness of deep learning by identifying previous spinal implants through application of deep learning. Summary of background data Deep learning has recently been actively applied to medical images. However, despite many attempts to apply deep learning to medical images, the application has rarely been successful. We aimed to demonstrate the effectiveness and usefulness of deep learning in the medical field. The goal of this study was to demonstrate the clinical usefulness of deep learning by identifying previous spinal implants through application of deep learning. Methods For deep learning algorithm development, radiographs were retrospectively obtained from clinical cases in which the patients had lumbar spine one-segment instrument surgery. A total of 2894 lumbar spine anteroposterior (AP: 1446 cases) and lateral (1448 cases) radiographs were collected. Labeling work was conducted for five different implants. We conducted experiments using three deep learning algorithms. The traditional deep neural network model built by coding the transfer learning algorithm, Google AutoML, and Apple Create ML. Recall (sensitivity) and precision (specificity) were measured after training. Results Overall, each model performed well in identifying each pedicle screw implant. In conventional transfer learning, AP radiography showed 97.0% precision and 96.7% recall. Lateral radiography showed 98.7% precision and 98.2% recall. In Google AutoML, AP radiography showed 91.4% precision and 87.4% recall; lateral radiography showed 97.9% precision and 98.4% recall. In Apple Create ML, AP radiography showed 76.0% precision and 73.0% recall; lateral radiography showed 89.0% precision and 87.0% recall. In all deep learning algorithms, precision and recall were higher in lateral than in AP radiography. Conclusion The deep learning application is effective for spinal implant identification. This demonstrates that clinicians can use ML-based deep learning applications to improve clinical practice and patient care.Level of Evidence: 3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Scarlett完成签到 ,获得积分10
1秒前
小火苗完成签到 ,获得积分10
1秒前
caoyulongchn完成签到,获得积分10
2秒前
future完成签到 ,获得积分10
4秒前
淡淡一德完成签到 ,获得积分10
4秒前
lanheqingniao完成签到,获得积分10
7秒前
嗯呢完成签到 ,获得积分10
8秒前
9秒前
研友_nPxRRn完成签到,获得积分10
10秒前
佳佳完成签到,获得积分10
10秒前
勤奋尔丝完成签到 ,获得积分10
11秒前
11秒前
可爱冰绿完成签到,获得积分10
12秒前
风中的蜜蜂完成签到,获得积分10
12秒前
无私的朝雪完成签到 ,获得积分10
13秒前
shishuang完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助30
14秒前
今年我必胖20斤完成签到,获得积分10
16秒前
16秒前
xiaoxie完成签到 ,获得积分10
17秒前
hua完成签到,获得积分10
18秒前
李静完成签到 ,获得积分10
18秒前
感性的俊驰完成签到 ,获得积分10
18秒前
19秒前
勤劳太阳完成签到,获得积分10
19秒前
安安安发布了新的文献求助10
20秒前
科研通AI5应助刘刘佳采纳,获得10
20秒前
取名叫做利完成签到,获得积分10
20秒前
TianFuAI完成签到,获得积分10
20秒前
不爱吃柠檬完成签到 ,获得积分10
21秒前
21秒前
Eden完成签到,获得积分10
22秒前
小白完成签到,获得积分10
23秒前
顺利的问柳完成签到,获得积分10
23秒前
24秒前
day_on发布了新的文献求助10
24秒前
噜噜噜完成签到 ,获得积分10
25秒前
感动的老虎完成签到,获得积分10
25秒前
好的昂完成签到,获得积分10
25秒前
叶落无痕、完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5162800
求助须知:如何正确求助?哪些是违规求助? 4355872
关于积分的说明 13560285
捐赠科研通 4200802
什么是DOI,文献DOI怎么找? 2304013
邀请新用户注册赠送积分活动 1303970
关于科研通互助平台的介绍 1250293