化学
亚甲基
固态
聚合物
密度泛函理论
格子(音乐)
分子
结晶学
核磁共振波谱
光谱学
固态核磁共振
立体化学
计算化学
高分子化学
有机化学
物理化学
核磁共振
物理
量子力学
声学
作者
Paulo G. M. Mileo,Shichen Yuan,Sergio Ayala,Pu Duan,Rocío Semino,Seth M. Cohen,Klaus Schmidt‐Rohr,Guillaume Maurin
摘要
The molecular connectivity of polymer–metal–organic framework (polyMOF) hybrid materials was investigated using density functional theory calculations and solid-state NMR spectroscopy. The architectural constraints that dictate the formation of polyMOFs were assessed by examining poly(1,4-benzenedicarboxylic acid) (pbdc) polymers in two archetypical MOF lattices (UiO-66 and IRMOF-1). Modeling of the polyMOFs showed that in the IRMOF-1-type lattice, six, seven, and eight methylene (–CH<sub>2</sub>–) groups between 1,4-benzenedicarboxylate (terephthalate, bdc<sup>2–</sup>) units can be accommodated without significant distortions, while in the UiO-66-type lattice, an optimal spacing of seven methylene groups between bdc<sup>2–</sup> units is needed to minimize strain. Solid-state NMR supports these predictions and reveals pronounced spectral differences for the same polymer in the two polyMOF lattices. With seven methylene groups, polyUiO-66-7a shows 7 ± 3% of uncoordinated terephthalate linkers, while these are undetectable (<4%) in the corresponding polyIRMOF-1-7a. Additionally, NMR-detected backbone mobility is significantly higher in the polyIRMOF-1-7a than in the corresponding polyUiO-66-7a, again indicative of taut chains in the latter.
科研通智能强力驱动
Strongly Powered by AbleSci AI