Automatic Feature Extraction and Construction Using Genetic Programming for Rotating Machinery Fault Diagnosis

特征提取 遗传程序设计 断层(地质) 计算机科学 判别式 人工智能 模式识别(心理学) 过程(计算) 集合(抽象数据类型) 特征(语言学) 转子(电动) 数据挖掘 机器学习 工程类 地质学 哲学 操作系统 地震学 机械工程 语言学 程序设计语言
作者
Bo Peng,Shuting Wan,Ying Bi,Bing Xue,Mengjie Zhang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (10): 4909-4923 被引量:64
标识
DOI:10.1109/tcyb.2020.3032945
摘要

Feature extraction is an essential process in the intelligent fault diagnosis of rotating machinery. Although existing feature extraction methods can obtain representative features from the original signal, domain knowledge and expert experience are often required. In this article, a novel diagnosis approach based on evolutionary learning, namely, automatic feature extraction and construction using genetic programming (AFECGP), is proposed to automatically generate informative and discriminative features from original vibration signals for identifying different fault types of rotating machinery. To achieve this, a new program structure, a new function set, and a new terminal set are developed in AFECGP to allow it to detect important subband signals and extract and construct informative features, automatically and simultaneously. More important, AFECGP can produce a flexible number of features for classification. Having the generated features, k -Nearest Neighbors is employed to perform fault diagnosis. The performance of the AFECGP-based fault diagnosis approach is evaluated on four fault diagnosis datasets of varying difficulty and compared with 14 baseline methods. The results show that the proposed approach achieves better fault diagnosis accuracy on all the datasets than the competitive methods and can effectively identify different fault conditions of rolling bearing, gear, and rotor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
drsxtang完成签到,获得积分10
2秒前
Sober完成签到 ,获得积分10
2秒前
上官若男应助庾稀采纳,获得10
3秒前
脑洞疼应助Layli采纳,获得10
3秒前
7秒前
huahua完成签到 ,获得积分10
8秒前
8秒前
顾矜应助WHHEY采纳,获得10
10秒前
WHHEY完成签到,获得积分20
16秒前
大模型应助MXX采纳,获得10
16秒前
Hopper完成签到,获得积分10
17秒前
18秒前
从容傲柏完成签到,获得积分10
18秒前
shiwen完成签到,获得积分10
19秒前
20秒前
20秒前
21秒前
椰水冰凉完成签到,获得积分10
21秒前
gnil发布了新的文献求助10
21秒前
XQQDD完成签到,获得积分10
22秒前
wei发布了新的文献求助10
23秒前
852应助科研通管家采纳,获得10
23秒前
爆米花应助科研通管家采纳,获得10
23秒前
23秒前
scm应助科研通管家采纳,获得30
23秒前
科研通AI5应助科研通管家采纳,获得80
23秒前
随遇而安应助科研通管家采纳,获得10
23秒前
随遇而安应助科研通管家采纳,获得10
23秒前
孙燕应助科研通管家采纳,获得10
23秒前
庾稀发布了新的文献求助10
24秒前
li关注了科研通微信公众号
26秒前
kk完成签到,获得积分10
27秒前
28秒前
zhouleiwang完成签到,获得积分10
32秒前
大个应助淑欢采纳,获得10
33秒前
mmmmmmgm完成签到 ,获得积分10
33秒前
MXX发布了新的文献求助10
34秒前
37秒前
早起大王完成签到,获得积分10
39秒前
脑洞疼应助liugm采纳,获得10
39秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846044
求助须知:如何正确求助?哪些是违规求助? 3388436
关于积分的说明 10553093
捐赠科研通 3108972
什么是DOI,文献DOI怎么找? 1713299
邀请新用户注册赠送积分活动 824679
科研通“疑难数据库(出版商)”最低求助积分说明 774982