特征提取
遗传程序设计
断层(地质)
计算机科学
判别式
人工智能
模式识别(心理学)
过程(计算)
集合(抽象数据类型)
特征(语言学)
转子(电动)
数据挖掘
机器学习
工程类
地质学
哲学
操作系统
地震学
机械工程
语言学
程序设计语言
作者
Bo Peng,Shuting Wan,Ying Bi,Bing Xue,Mengjie Zhang
标识
DOI:10.1109/tcyb.2020.3032945
摘要
Feature extraction is an essential process in the intelligent fault diagnosis of rotating machinery. Although existing feature extraction methods can obtain representative features from the original signal, domain knowledge and expert experience are often required. In this article, a novel diagnosis approach based on evolutionary learning, namely, automatic feature extraction and construction using genetic programming (AFECGP), is proposed to automatically generate informative and discriminative features from original vibration signals for identifying different fault types of rotating machinery. To achieve this, a new program structure, a new function set, and a new terminal set are developed in AFECGP to allow it to detect important subband signals and extract and construct informative features, automatically and simultaneously. More important, AFECGP can produce a flexible number of features for classification. Having the generated features, k -Nearest Neighbors is employed to perform fault diagnosis. The performance of the AFECGP-based fault diagnosis approach is evaluated on four fault diagnosis datasets of varying difficulty and compared with 14 baseline methods. The results show that the proposed approach achieves better fault diagnosis accuracy on all the datasets than the competitive methods and can effectively identify different fault conditions of rolling bearing, gear, and rotor.
科研通智能强力驱动
Strongly Powered by AbleSci AI