mustGAN: multi-stream Generative Adversarial Networks for MR Image Synthesis

计算机科学 人工智能 对比度(视觉) 模式识别(心理学) 特征(语言学) 代表(政治) 块(置换群论) 图像(数学) 数学 几何学 政治学 语言学 政治 哲学 法学
作者
Mahmut Yurt,Salman Ul Hassan Dar,Aykut Erdem,Erkut Erdem,Kader Karlı Oğuz,Tolga Çukur
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:70: 101944-101944 被引量:108
标识
DOI:10.1016/j.media.2020.101944
摘要

Multi-contrast MRI protocols increase the level of morphological information available for diagnosis. Yet, the number and quality of contrasts are limited in practice by various factors including scan time and patient motion. Synthesis of missing or corrupted contrasts from other high-quality ones can alleviate this limitation. When a single target contrast is of interest, common approaches for multi-contrast MRI involve either one-to-one or many-to-one synthesis methods depending on their input. One-to-one methods take as input a single source contrast, and they learn a latent representation sensitive to unique features of the source. Meanwhile, many-to-one methods receive multiple distinct sources, and they learn a shared latent representation more sensitive to common features across sources. For enhanced image synthesis, we propose a multi-stream approach that aggregates information across multiple source images via a mixture of multiple one-to-one streams and a joint many-to-one stream. The complementary feature maps generated in the one-to-one streams and the shared feature maps generated in the many-to-one stream are combined with a fusion block. The location of the fusion block is adaptively modified to maximize task-specific performance. Quantitative and radiological assessments on T1,- T2-, PD-weighted, and FLAIR images clearly demonstrate the superior performance of the proposed method compared to previous state-of-the-art one-to-one and many-to-one methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
金金完成签到 ,获得积分10
1秒前
ling完成签到,获得积分10
3秒前
3秒前
淡定曼青完成签到,获得积分10
4秒前
小蘑菇应助小怪兽采纳,获得10
7秒前
股价发布了新的文献求助10
7秒前
8秒前
w。发布了新的文献求助10
10秒前
10秒前
13秒前
13秒前
YangLi发布了新的文献求助10
14秒前
Ember完成签到 ,获得积分10
15秒前
16秒前
16秒前
WXM发布了新的文献求助10
17秒前
17秒前
17秒前
CodeCraft应助顶顶顶采纳,获得10
17秒前
19秒前
7分运气完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
yznfly应助shiyongli采纳,获得50
21秒前
Marzuk发布了新的文献求助10
21秒前
Nora完成签到 ,获得积分10
21秒前
飘逸秋荷完成签到,获得积分10
22秒前
23秒前
Radio发布了新的文献求助10
24秒前
共享精神应助贪玩飞珍采纳,获得10
24秒前
26秒前
26秒前
26秒前
26秒前
服了您完成签到 ,获得积分10
27秒前
28秒前
小怪兽完成签到,获得积分10
28秒前
Maestro_S应助科研通管家采纳,获得10
29秒前
pluto应助科研通管家采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495079
求助须知:如何正确求助?哪些是违规求助? 4592859
关于积分的说明 14438940
捐赠科研通 4525695
什么是DOI,文献DOI怎么找? 2479581
邀请新用户注册赠送积分活动 1464436
关于科研通互助平台的介绍 1437296