Boundary-aware context neural network for medical image segmentation

计算机科学 人工智能 分割 卷积神经网络 判别式 棱锥(几何) 模式识别(心理学) 编码器 图像分割 背景(考古学) 联营 尺度空间分割 特征(语言学) 特征提取 计算机视觉 数学 生物 操作系统 哲学 语言学 古生物学 几何学
作者
Ruxin Wang,Shu‐Yuan Chen,Chaojie Ji,Jianping Fan,Ye Li
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:78: 102395-102395 被引量:143
标识
DOI:10.1016/j.media.2022.102395
摘要

Medical image segmentation can provide a reliable basis for further clinical analysis and disease diagnosis. With the development of convolutional neural networks (CNNs), medical image segmentation performance has advanced significantly. However, most existing CNN-based methods often produce unsatisfactory segmentation masks without accurate object boundaries. This problem is caused by the limited context information and inadequate discriminative feature maps after consecutive pooling and convolution operations. Additionally, medical images are characterized by high intra-class variation, inter-class indistinction and noise, extracting powerful context and aggregating discriminative features for fine-grained segmentation remain challenging. In this study, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation to capture richer context and preserve fine spatial information, which incorporates encoder-decoder architecture. In each stage of the encoder sub-network, a proposed pyramid edge extraction module first obtains multi-granularity edge information. Then a newly designed mini multi-task learning module for jointly learning segments the object masks and detects lesion boundaries, in which a new interactive attention layer is introduced to bridge the two tasks. In this way, information complementarity between different tasks is achieved, which effectively leverages the boundary information to offer strong cues for better segmentation prediction. Finally, a cross feature fusion module acts to selectively aggregate multi-level features from the entire encoder sub-network. By cascading these three modules, richer context and fine-grain features of each stage are encoded and then delivered to the decoder. The results of extensive experiments on five datasets show that the proposed BA-Net outperforms state-of-the-art techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巨大的小侠完成签到,获得积分10
刚刚
淡淡的绮发布了新的文献求助20
刚刚
6秒前
8秒前
yingyuan发布了新的文献求助10
11秒前
打打应助犹豫觅翠采纳,获得10
12秒前
乐观银耳汤完成签到,获得积分10
13秒前
13秒前
14秒前
ZQ发布了新的文献求助10
17秒前
18秒前
ZYN发布了新的文献求助10
18秒前
19秒前
大模型应助正义狗狗侠采纳,获得10
20秒前
22秒前
23秒前
23秒前
longh发布了新的文献求助20
24秒前
zz发布了新的文献求助10
26秒前
xxx发布了新的文献求助10
26秒前
初心完成签到,获得积分10
27秒前
28秒前
犹豫觅翠发布了新的文献求助10
29秒前
冷酷鱼完成签到 ,获得积分10
29秒前
30秒前
提莫将军发布了新的文献求助10
32秒前
陈YX发布了新的文献求助10
33秒前
33秒前
37秒前
完美谷秋完成签到 ,获得积分20
38秒前
mm完成签到,获得积分10
39秒前
pmx完成签到,获得积分10
39秒前
wonwojo发布了新的文献求助20
41秒前
coolkid应助大鸡腿采纳,获得10
41秒前
mm发布了新的文献求助10
41秒前
Ameko809应助感动花卷采纳,获得10
42秒前
42秒前
43秒前
xxx完成签到,获得积分10
43秒前
琪琪的完成签到,获得积分10
45秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942399
求助须知:如何正确求助?哪些是违规求助? 3487682
关于积分的说明 11044739
捐赠科研通 3218082
什么是DOI,文献DOI怎么找? 1778763
邀请新用户注册赠送积分活动 864413
科研通“疑难数据库(出版商)”最低求助积分说明 799438