PLGA公司
依托三酯
药代动力学
核化学
明胶
纳米颗粒
甲基丙烯酸缩水甘油酯
甲基丙烯酸
粒径
材料科学
药理学
化学
医学
共聚物
有机化学
纳米技术
聚合物
物理化学
作者
Enas El-Maghawry,Mina Ibrahim Tadros,Seham A. Elkheshen,Ahmed Abdelbary
摘要
Etoricoxib is a selective inhibitor of COX-2 enzyme. It is proposed as a potent anti-inflammatory drug intended for the control of irritable bowel syndrome. The current work aimed at developing etoricoxib-loaded nanoparticles for colon- targeting.PLGA nanoparticles were developed via nano-spray drying technique. The D-optimal design was adopted for the investigation of the influence of i) DL-lactide-coglycolide (PLGA) concentration, ii) polyvinylpyrrolidone K30 (PVP K30) concentration and iii) lactide:glycolide ratio in the copolymer chain on the yield%, the encapsulation efficiency (EE%), particle size (PS) and percentage of drug release after 2h (P2h), 4h (P4h) and 12h (P12h). To promote colon targeting of the systems, the best achieved system (M14) was either directly coated with poly(methacrylic acid-co-methyl methacrylate) [Eudragit®-S100] or loaded into hard gelatin capsules and the capsules were coated with poly(methacrylic acid-co-methyl methacrylate) (E-M14C). The pharmacokinetic parameters of etoricoxib following oral administration of E-M14C in healthy volunteers were assessed relative to commercial etoricoxib tablets.M14 system was prepared using PLGA (0.5% w/v) at a lactide:glycolide ratio of 100:0, in the presence of PVP K30 (2% w/v). M14 system was nano-spherical particles of 488 nm size possessing promising yield% (63.5%) and EE% (91.2%). The percentage drug released after 2, 4 and 12 hours were 43.41%, 47.34 and 64.96%, respectively. Following M14-loading into hard gelatin capsules and coating with poly(methacrylic acid-co-methyl methacrylate) [Eudragit-S100], the respective P2h, P4h and P12h were 10.1%, 28.60% and 65.45%. Significant (p < 0.05) differences between the pharmacokinetic parameter of E-M14C in comparison with the commercial product were revealed with a delay in Tmax (from 2.5h to 6h), a prolongation in MRT0-∞ (from 24.4h to 34.7h) and an increase in the relative oral bioavailability (4.23 folds).E-M14C is a potential system for possible colon targeting of etoricoxib.
科研通智能强力驱动
Strongly Powered by AbleSci AI