亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Performance degradation assessment of wind turbine gearbox based on maximum mean discrepancy and multi-sensor transfer learning

涡轮机 传动系 停工期 计算机科学 风速 风力发电 模拟 工程类 可靠性工程 扭矩 气象学 机械工程 热力学 电气工程 物理
作者
Yubin Pan,Rongjing Hong,Jie Chen,Jianshe Feng,Weiwei Wu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:20 (1): 118-138 被引量:37
标识
DOI:10.1177/1475921720919073
摘要

Gearboxes are critical transmission components in the drivetrain of wind turbine, which have a dominant failure rate and the highest downtime loss in all wind turbine subsystems. However, load variations of wind turbine gearbox are far from smooth and usually nondeterministic, which result in inconsistent data distributions. To solve the problem, a novel performance degradation assessment and prognosis method based on maximum mean discrepancy is proposed to test the difference between data distributions and extract the characteristics of multi-source working conditions data. Besides, the increase in sensors will bring more difficulties to establish prediction models in real-world scenarios due to different installation locations. In view of this, a transfer learning strategy called joint distribution adaptation is utilized to adapt data distribution between multi-sensor signals. Nevertheless, the presence of background noise of wind turbine signals restricts the applicability of these algorithms in practice. To further reduce the distribution difference, a novel criterion is proposed to evaluate and measure the data distribution difference between known and tested working conditions based on the witness function of maximum mean discrepancy. The application and superiority of proposed methodology are validated using a wind turbine gearbox life-cycle test data set. Meanwhile, model comparison and cross-verification are conducted between conventional and proposed prediction models. The results indicate that the proposed method has a better performance in performance degradation assessment for wind turbine gearbox.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
馆长举报waoller1求助涉嫌违规
38秒前
领导范儿应助爱听歌笑寒采纳,获得10
39秒前
43秒前
49秒前
56秒前
steforeca发布了新的文献求助10
1分钟前
星辰大海应助石石夏采纳,获得10
1分钟前
大模型应助cds采纳,获得10
1分钟前
2分钟前
叶子的叶完成签到,获得积分10
2分钟前
2分钟前
3分钟前
ding应助科研通管家采纳,获得10
3分钟前
斯文败类应助科研通管家采纳,获得10
3分钟前
ali发布了新的文献求助10
3分钟前
caca完成签到,获得积分0
4分钟前
4分钟前
百里一江发布了新的文献求助10
4分钟前
andrele发布了新的文献求助30
4分钟前
虚幻雁荷完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得30
5分钟前
CodeCraft应助科研通管家采纳,获得10
5分钟前
百里一江完成签到 ,获得积分10
5分钟前
6分钟前
SCINEXUS应助lezbj99采纳,获得50
6分钟前
jami-yu发布了新的文献求助30
6分钟前
6分钟前
6分钟前
Ronnie完成签到 ,获得积分10
6分钟前
石石夏发布了新的文献求助10
6分钟前
lezbj99完成签到,获得积分10
6分钟前
拟南芥好壮完成签到,获得积分20
6分钟前
ZDM6094完成签到 ,获得积分10
6分钟前
jami-yu完成签到,获得积分20
6分钟前
Sunny完成签到,获得积分10
6分钟前
花落无声完成签到 ,获得积分10
6分钟前
RFlord发布了新的文献求助10
7分钟前
7分钟前
7分钟前
LeezZZZ发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568386
求助须知:如何正确求助?哪些是违规求助? 3991017
关于积分的说明 12355327
捐赠科研通 3662987
什么是DOI,文献DOI怎么找? 2018578
邀请新用户注册赠送积分活动 1052998
科研通“疑难数据库(出版商)”最低求助积分说明 940575