Prediction of Precipitation Based on Recurrent Neural Networks in Jingdezhen, Jiangxi Province, China

降水 循环神经网络 计算机科学 人工神经网络 大洪水 水资源 机器学习 气象学 人工智能 定量降水预报 环境科学 气候学 地理 地质学 生态学 考古 生物
作者
Jinle Kang,Huimin Wang,Feifei Yuan,Zhiqiang Wang,Jing Huang,Tian Qiu
出处
期刊:Atmosphere [Multidisciplinary Digital Publishing Institute]
卷期号:11 (3): 246-246 被引量:69
标识
DOI:10.3390/atmos11030246
摘要

Precipitation is a critical input for hydrologic simulation and prediction, and is widely used for agriculture, water resources management, and prediction of flood and drought, among other activities. Traditional precipitation prediction researches often established one or more probability models of historical data based on the statistical prediction methods and machine learning techniques. However, few studies have been attempted deep learning methods such as the state-of-the-art for Recurrent Neural Networks (RNNs) networks in meteorological sequence time series predictions. We deployed Long Short-Term Memory (LSTM) network models for predicting the precipitation based on meteorological data from 2008 to 2018 in Jingdezhen City. After identifying the correlation between meteorological variables and the precipitation, nine significant input variables were selected to construct the LSTM model. Then, the selected meteorological variables were refined by the relative importance of input variables to reconstruct the LSTM model. Finally, the LSTM model with final selected input variables is used to predict the precipitation and the performance is compared with other classical statistical algorithms and the machine learning algorithms. The experimental results show that the LSTM is suitable for precipitation prediction. The RNN models, combined with meteorological variables, could predict the precipitation accurately in Jingdezhen City and provide sufficient time to prepare strategies against potential related disasters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
reerwt完成签到,获得积分10
1秒前
大模型应助边琳娜采纳,获得10
1秒前
小张完成签到 ,获得积分10
1秒前
小呆发布了新的文献求助10
1秒前
彭于晏应助Yong采纳,获得10
2秒前
海中有月发布了新的文献求助10
2秒前
GR发布了新的文献求助10
2秒前
2秒前
我爱科研发布了新的文献求助10
3秒前
3秒前
金金钟发布了新的文献求助10
3秒前
3秒前
曹彬发布了新的文献求助10
3秒前
Mininine完成签到,获得积分10
4秒前
薄荷味完成签到 ,获得积分10
4秒前
5秒前
感动依霜完成签到 ,获得积分10
5秒前
CodeCraft应助红丽阿妹采纳,获得10
5秒前
5秒前
zzz完成签到,获得积分10
6秒前
KGYM完成签到,获得积分10
6秒前
Lontano完成签到,获得积分10
6秒前
思源应助寒冷的断秋采纳,获得10
6秒前
李健的小迷弟应助小猫咪采纳,获得10
6秒前
Stsirywtbd完成签到,获得积分10
7秒前
浮游应助细心的雨竹采纳,获得10
7秒前
lxlx发布了新的文献求助10
8秒前
8秒前
可靠乌冬面完成签到,获得积分10
9秒前
快乐一江发布了新的文献求助10
9秒前
10秒前
酷波er应助一一采纳,获得10
10秒前
CodeCraft应助卷毛羊在忙采纳,获得10
11秒前
柳柳发布了新的文献求助20
11秒前
我爱科研完成签到,获得积分10
11秒前
12秒前
12秒前
充电宝应助京阿尼采纳,获得10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4905930
求助须知:如何正确求助?哪些是违规求助? 4183651
关于积分的说明 12991222
捐赠科研通 3949866
什么是DOI,文献DOI怎么找? 2166163
邀请新用户注册赠送积分活动 1184716
关于科研通互助平台的介绍 1090985