Prediction of Precipitation Based on Recurrent Neural Networks in Jingdezhen, Jiangxi Province, China

降水 循环神经网络 计算机科学 人工神经网络 大洪水 水资源 机器学习 气象学 人工智能 定量降水预报 环境科学 气候学 地理 地质学 生态学 考古 生物
作者
Jinle Kang,Huimin Wang,Feifei Yuan,Zhiqiang Wang,Jing Huang,Tian Qiu
出处
期刊:Atmosphere [Multidisciplinary Digital Publishing Institute]
卷期号:11 (3): 246-246 被引量:69
标识
DOI:10.3390/atmos11030246
摘要

Precipitation is a critical input for hydrologic simulation and prediction, and is widely used for agriculture, water resources management, and prediction of flood and drought, among other activities. Traditional precipitation prediction researches often established one or more probability models of historical data based on the statistical prediction methods and machine learning techniques. However, few studies have been attempted deep learning methods such as the state-of-the-art for Recurrent Neural Networks (RNNs) networks in meteorological sequence time series predictions. We deployed Long Short-Term Memory (LSTM) network models for predicting the precipitation based on meteorological data from 2008 to 2018 in Jingdezhen City. After identifying the correlation between meteorological variables and the precipitation, nine significant input variables were selected to construct the LSTM model. Then, the selected meteorological variables were refined by the relative importance of input variables to reconstruct the LSTM model. Finally, the LSTM model with final selected input variables is used to predict the precipitation and the performance is compared with other classical statistical algorithms and the machine learning algorithms. The experimental results show that the LSTM is suitable for precipitation prediction. The RNN models, combined with meteorological variables, could predict the precipitation accurately in Jingdezhen City and provide sufficient time to prepare strategies against potential related disasters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wade发布了新的文献求助10
1秒前
1秒前
2秒前
花藏影完成签到,获得积分10
3秒前
慕青应助平常毛衣采纳,获得10
5秒前
浮游应助州府十三采纳,获得10
5秒前
6秒前
7秒前
灵巧的导师完成签到,获得积分10
7秒前
shgd完成签到,获得积分10
9秒前
zwy发布了新的文献求助10
12秒前
wade完成签到,获得积分10
12秒前
15秒前
隐形曼青应助闭眼玩手机采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
小蘑菇应助pingli19861002采纳,获得10
17秒前
17秒前
20秒前
飘飘玲应助刘恒宇采纳,获得10
20秒前
alooof发布了新的文献求助10
23秒前
23秒前
pcr163应助QinLi采纳,获得50
23秒前
斯文败类应助小熊同学采纳,获得30
23秒前
俭朴的发带完成签到,获得积分10
26秒前
ccob完成签到,获得积分10
27秒前
gezhao发布了新的文献求助10
28秒前
29秒前
哆啦的空间站应助北彧采纳,获得20
30秒前
大宝剑2号完成签到,获得积分10
30秒前
CodeCraft应助淡定树叶采纳,获得10
31秒前
32秒前
33秒前
无所谓发布了新的文献求助10
34秒前
香蕉觅云应助磐xst采纳,获得10
34秒前
星宿完成签到,获得积分10
35秒前
37秒前
平常毛衣发布了新的文献求助10
37秒前
38秒前
39秒前
思源应助frankk采纳,获得10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920227
求助须知:如何正确求助?哪些是违规求助? 4191881
关于积分的说明 13019681
捐赠科研通 3962699
什么是DOI,文献DOI怎么找? 2172183
邀请新用户注册赠送积分活动 1190075
关于科研通互助平台的介绍 1098875