社会神经科学
心理学
亲社会行为
认知科学
社会认知
观察学习
强化学习
神经影像学
认知
认知神经科学
计算模型
心理化
社会学习
心理理论
神经功能成像
认知心理学
计算神经科学
人工智能
神经科学
发展心理学
计算机科学
数学教育
教育学
体验式学习
作者
Patricia Lockwood,Miriam C. Klein-Flügge
摘要
Abstract Social neuroscience aims to describe the neural systems that underpin social cognition and behaviour. Over the past decade, researchers have begun to combine computational models with neuroimaging to link social computations to the brain. Inspired by approaches from reinforcement learning theory, which describes how decisions are driven by the unexpectedness of outcomes, accounts of the neural basis of prosocial learning, observational learning, mentalizing and impression formation have been developed. Here we provide an introduction for researchers who wish to use these models in their studies. We consider both theoretical and practical issues related to their implementation, with a focus on specific examples from the field.
科研通智能强力驱动
Strongly Powered by AbleSci AI