已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multitask learning for petrophysical attribute prediction using convolutional neural network and imbalance dataset

岩石物理学 工作流程 卷积神经网络 人工神经网络 计算机科学 人工智能 深度学习 多任务学习 机器学习 磁导率 储层建模 任务(项目管理) 模式识别(心理学) 多孔性 地质学 石油工程 数据库 工程类 岩土工程 生物 遗传学 系统工程
作者
Chaoshun Hu,Boqin Sun
标识
DOI:10.1190/segam2020-w13-03.1
摘要

PreviousNext No AccessSEG Technical Program Expanded Abstracts 2020Multitask learning for petrophysical attribute prediction using convolutional neural network and imbalance datasetAuthors: Chaoshun HuBoqin SunChaoshun HuChevron Energy Technology CompanySearch for more papers by this author and Boqin SunChevron Energy Technology CompanySearch for more papers by this authorhttps://doi.org/10.1190/segam2020-w13-03.1 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractPorosity, permeability and fluid saturations are three fundamental petrophysical attributes of reservoir systems that are directly related to the storage capacity, fluid flow capacity, and amount of hydrocarbon pore volume. Recently, neural networks have been widely utilized to analyze the data and predict the target. However, the traditional neural network based artificial intelligence method is implemented to train the input features to match these attributes, for example, porosity or permeability, respectively. Here we introduce a multitask learning which can learn to predict porosity and permeability at the same time using multitask learning neural networks. We also introduced a new workflow to resolve the imbalance issue existing in well log data which can enable us to estimate the porosity and permeability efficiently and accurately. We also demonstrated the effectiveness of the proposed algorithm and workflow using Equinor’s Volve field public dataset.Keywords: multi-task learning, convolutional neural network, petrophysics, data imbalance, samplingPermalink: https://doi.org/10.1190/segam2020-w13-03.1FiguresReferencesRelatedDetailsCited byLithofacies logging identification for strongly heterogeneous deep-buried reservoirs based on improved Bayesian inversion: The Lower Jurassic sandstone, Central Junggar Basin, China20 January 2023 | Frontiers in Earth Science, Vol. 11 SEG Technical Program Expanded Abstracts 2020ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2020 Pages: 3887 publication data© 2020 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 30 Sep 2020 CITATION INFORMATION Chaoshun Hu and Boqin Sun, (2020), "Multitask learning for petrophysical attribute prediction using convolutional neural network and imbalance dataset," SEG Technical Program Expanded Abstracts : 3857-3861. https://doi.org/10.1190/segam2020-w13-03.1 Plain-Language Summary Keywordsmulti-task learningconvolutional neural networkpetrophysicsdata imbalancesamplingPDF DownloadLoading ...

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
白三完成签到,获得积分10
4秒前
Lee完成签到 ,获得积分10
7秒前
wuk悟空发布了新的文献求助30
7秒前
竹枝词发布了新的文献求助10
8秒前
10秒前
小马甲应助xiyue采纳,获得10
12秒前
Christy完成签到 ,获得积分10
13秒前
15秒前
守一完成签到,获得积分10
17秒前
晓阳发布了新的文献求助30
20秒前
Cosmosurfer完成签到,获得积分10
21秒前
25秒前
安静的棉花糖完成签到 ,获得积分10
26秒前
XU2025完成签到 ,获得积分10
29秒前
Christy关注了科研通微信公众号
31秒前
Jasper应助在一采纳,获得10
32秒前
33秒前
QIN发布了新的文献求助10
36秒前
馆长举报zhizhi2021求助涉嫌违规
41秒前
无花果应助QIN采纳,获得10
45秒前
袁庚完成签到 ,获得积分10
50秒前
小灵通完成签到 ,获得积分10
52秒前
老实铁身发布了新的文献求助10
55秒前
馆长应助雪梨101采纳,获得50
56秒前
Benjamin完成签到 ,获得积分10
57秒前
天天快乐应助002采纳,获得10
59秒前
59秒前
伊莎贝儿完成签到 ,获得积分10
1分钟前
Chao123_完成签到,获得积分10
1分钟前
冷傲忆彤完成签到 ,获得积分10
1分钟前
老实铁身完成签到,获得积分10
1分钟前
1分钟前
1分钟前
002发布了新的文献求助10
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
tangrzh发布了新的文献求助10
1分钟前
小马甲应助李青函采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4567033
求助须知:如何正确求助?哪些是违规求助? 3990280
关于积分的说明 12354447
捐赠科研通 3661934
什么是DOI,文献DOI怎么找? 2017909
邀请新用户注册赠送积分活动 1052447
科研通“疑难数据库(出版商)”最低求助积分说明 939964