Object detection in optical remote sensing images: A survey and a new benchmark

计算机科学 对象(语法) 目标检测 人工智能 比例(比率) 深度学习 班级(哲学) 遥感 计算机视觉 模式识别(心理学) 水准点(测量) 数据挖掘 地理 大地测量学 地图学
作者
Ke Li,Gang Wan,Gong Cheng,Liqiu Meng,Junwei Han
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:159: 296-307 被引量:1754
标识
DOI:10.1016/j.isprsjprs.2019.11.023
摘要

Substantial efforts have been devoted more recently to presenting various methods for object detection in optical remote sensing images. However, the current survey of datasets and deep learning based methods for object detection in optical remote sensing images is not adequate. Moreover, most of the existing datasets have some shortcomings, for example, the numbers of images and object categories are small scale, and the image diversity and variations are insufficient. These limitations greatly affect the development of deep learning based object detection methods. In the paper, we provide a comprehensive review of the recent deep learning based object detection progress in both the computer vision and earth observation communities. Then, we propose a large-scale, publicly available benchmark for object DetectIon in Optical Remote sensing images, which we name as DIOR. The dataset contains 23,463 images and 192,472 instances, covering 20 object classes. The proposed DIOR dataset (1) is large-scale on the object categories, on the object instance number, and on the total image number; (2) has a large range of object size variations, not only in terms of spatial resolutions, but also in the aspect of inter- and intra-class size variability across objects; (3) holds big variations as the images are obtained with different imaging conditions, weathers, seasons, and image quality; and (4) has high inter-class similarity and intra-class diversity. The proposed benchmark can help the researchers to develop and validate their data-driven methods. Finally, we evaluate several state-of-the-art approaches on our DIOR dataset to establish a baseline for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助笋尖鱼采纳,获得10
刚刚
1秒前
杨希妍发布了新的文献求助10
3秒前
Hydrogen发布了新的文献求助10
4秒前
curtisness应助醉熏的断天采纳,获得10
4秒前
Anna完成签到,获得积分10
4秒前
electricelectric应助哦喔采纳,获得30
4秒前
彭于晏应助米缸采纳,获得10
4秒前
科研通AI6应助贺无剑采纳,获得10
5秒前
5秒前
dylan完成签到,获得积分20
7秒前
helly完成签到,获得积分10
7秒前
Spring发布了新的文献求助30
7秒前
大个应助潇洒的奇异果采纳,获得10
9秒前
10秒前
jackpot完成签到,获得积分10
10秒前
10秒前
红茶冰可可完成签到 ,获得积分10
10秒前
11秒前
Ava应助戒骄戒躁采纳,获得10
11秒前
阿航完成签到,获得积分10
11秒前
12秒前
dd发布了新的文献求助10
12秒前
12秒前
刘磊发布了新的文献求助10
13秒前
13秒前
香菜大王完成签到 ,获得积分10
13秒前
樱岛完成签到,获得积分10
14秒前
哈哈发布了新的文献求助20
15秒前
hongci13发布了新的文献求助10
15秒前
16秒前
Hydrogen完成签到,获得积分10
16秒前
wang发布了新的文献求助30
17秒前
走地坤发布了新的文献求助10
17秒前
杨希妍完成签到,获得积分20
18秒前
19秒前
TMF发布了新的文献求助10
19秒前
niu发布了新的文献求助10
19秒前
sh发布了新的文献求助30
20秒前
20秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344166
求助须知:如何正确求助?哪些是违规求助? 4479497
关于积分的说明 13943155
捐赠科研通 4376560
什么是DOI,文献DOI怎么找? 2404847
邀请新用户注册赠送积分活动 1397207
关于科研通互助平台的介绍 1369579