Modeling doped and defective oxides in catalysis with density functional theory methods: Room for improvements

密度泛函理论 离域电子 氧化物 电子结构 混合功能 化学物理 计算化学 催化作用 兴奋剂 材料科学 化学 有机化学 光电子学
作者
Gianfranco Pacchioni
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:128 (18) 被引量:242
标识
DOI:10.1063/1.2819245
摘要

Due to the well-known problem of the self-interaction, standard density functional theory (DFT) methods tend to produce delocalized holes and electrons in defective oxide materials even when there is ample experimental evidence of a strong localization. For late transition metal compounds or rare earth oxides, this results in the incorrect description of the electronic structure of the system (e.g., magnetic insulators are predicted to be metallic). Practical ways to correct this deficiency are based on the use of hybrid functionals or of the DFT+U approach. In this way, most of the limitations related to the self-interaction are removed, and the electronic structure is properly described. What is less clear is to what extent hybrid functionals, DFT+U approaches, or standard DFT functionals can properly describe the strength of the chemical bonds at the surface of an oxide. This is a crucial question if one is interested in the catalytic properties of oxide surfaces. Oxidation reactions often involve oxygen detachment from the surface and incorporation into an organic substrate. Oxides are doped with heteroatoms to create defects and facilitate oxygen removal from the surface, with formation of oxygen vacancies. Do standard DFT calculations provide a good binding energy of the missing oxygen despite the failure in giving the right electronic structure? Can hybrid functionals or the DFT+U approach provide a simple yet reliable way to get accurate reaction enthalpies and energy barriers? In this essay, we discuss these problems by analyzing some case histories and the relatively scarce data existing in the literature. The conclusion is that while modern electronic structure methods accurately reproduce and predict a wide range of electronic, optical, and magnetic properties of oxides, the description of the strength of chemical bonds still needs considerable improvements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助小熊饼干采纳,获得10
1秒前
一只完成签到,获得积分10
4秒前
4秒前
vampire完成签到 ,获得积分10
5秒前
5秒前
努力发布了新的文献求助10
5秒前
纯真皮卡丘完成签到 ,获得积分10
7秒前
可靠板栗发布了新的文献求助10
7秒前
hyperthermal1完成签到,获得积分10
9秒前
发条橙发布了新的文献求助20
13秒前
15秒前
可靠板栗完成签到,获得积分10
17秒前
sxm发布了新的文献求助10
19秒前
kg完成签到,获得积分10
20秒前
聪明白羊完成签到,获得积分10
25秒前
爆米花应助wshwx采纳,获得10
25秒前
小马甲应助LIJIANGSHENG采纳,获得10
30秒前
32秒前
lyw完成签到,获得积分10
32秒前
充电宝应助czz采纳,获得10
37秒前
桐桐应助galioo3000采纳,获得10
39秒前
40秒前
上官若男应助懵懂的易蓉采纳,获得10
44秒前
46秒前
焦糖布丁的滋味完成签到,获得积分10
47秒前
姽婳wy发布了新的文献求助10
48秒前
科研通AI5应助wshwx采纳,获得10
48秒前
48秒前
czz发布了新的文献求助10
50秒前
ding应助小明采纳,获得10
50秒前
Wsq发布了新的文献求助10
51秒前
galioo3000发布了新的文献求助10
51秒前
51秒前
54秒前
小牙医完成签到,获得积分10
55秒前
阿星完成签到,获得积分10
56秒前
56秒前
yyy完成签到 ,获得积分10
57秒前
58秒前
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776410
求助须知:如何正确求助?哪些是违规求助? 3321842
关于积分的说明 10208028
捐赠科研通 3037175
什么是DOI,文献DOI怎么找? 1666562
邀请新用户注册赠送积分活动 797579
科研通“疑难数据库(出版商)”最低求助积分说明 757872