Reconstruction of 2D PET data with Monte Carlo generated system matrix for generalized natural pixels

像素 蒙特卡罗方法 基函数 计算机科学 算法 探测器 迭代重建 基础(线性代数) 图像分辨率 计算机视觉 人工智能 数学 几何学 数学分析 电信 统计
作者
Stefaan Vandenberghe,Steven Staelens,Charles L. Byrne,E.J. Soares,Ignace Lemahieu,Stephen J. Glick
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:51 (12): 3105-3125 被引量:35
标识
DOI:10.1088/0031-9155/51/12/008
摘要

In discrete detector PET, natural pixels are image basis functions calculated from the response of detector pairs. By using reconstruction with natural pixel basis functions, the discretization of the object into a predefined grid can be avoided. Here, we propose to use generalized natural pixel reconstruction. Using this approach, the basis functions are not the detector sensitivity functions as in the natural pixel case but uniform parallel strips. The backprojection of the strip coefficients results in the reconstructed image. This paper proposes an easy and efficient way to generate the matrix M directly by Monte Carlo simulation. Elements of the generalized natural pixel system matrix are formed by calculating the intersection of a parallel strip with the detector sensitivity function. These generalized natural pixels are easier to use than conventional natural pixels because the final step from solution to a square pixel representation is done by simple backprojection. Due to rotational symmetry in the PET scanner, the matrix M is block circulant and only the first blockrow needs to be stored. Data were generated using a fast Monte Carlo simulator using ray tracing. The proposed method was compared to a listmode MLEM algorithm, which used ray tracing for doing forward and backprojection. Comparison of the algorithms with different phantoms showed that an improved resolution can be obtained using generalized natural pixel reconstruction with accurate system modelling. In addition, it was noted that for the same resolution a lower noise level is present in this reconstruction. A numerical observer study showed the proposed method exhibited increased performance as compared to a standard listmode EM algorithm. In another study, more realistic data were generated using the GATE Monte Carlo simulator. For these data, a more uniform contrast recovery and a better contrast-to-noise performance were observed. It was observed that major improvements in contrast recovery were obtained with MLEM when the correct system matrix was used instead of simple ray tracing. The correct modelling was the major cause of improved contrast for the same background noise. Less important factors were the choice of the algorithm (MLEM performed better than ART) and the basis functions (generalized natural pixels gave better results than pixels).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小蘑菇应助orange9采纳,获得10
2秒前
5秒前
6秒前
orange9发布了新的文献求助10
11秒前
13秒前
14秒前
17秒前
乔心发布了新的文献求助10
17秒前
19秒前
xmf发布了新的文献求助10
20秒前
23秒前
繁荣的之柔完成签到,获得积分10
25秒前
Jasper应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
在水一方应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
公孙世往发布了新的文献求助10
29秒前
bkagyin应助北风采纳,获得10
29秒前
科研通AI5应助繁荣的之柔采纳,获得10
30秒前
32秒前
RR发布了新的文献求助10
35秒前
共享精神应助小红采纳,获得10
35秒前
36秒前
37秒前
41秒前
北风发布了新的文献求助10
44秒前
七七完成签到,获得积分10
44秒前
英姑应助七月份的表采纳,获得10
47秒前
mads完成签到 ,获得积分10
50秒前
田様应助复杂静竹采纳,获得10
51秒前
吴刚俊发布了新的文献求助10
51秒前
57秒前
cbx发布了新的文献求助10
1分钟前
Master完成签到,获得积分10
1分钟前
1分钟前
和谐的蜡烛完成签到,获得积分10
1分钟前
1分钟前
爆米花应助cbx采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780394
求助须知:如何正确求助?哪些是违规求助? 3325736
关于积分的说明 10224191
捐赠科研通 3040859
什么是DOI,文献DOI怎么找? 1669087
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649