扩展卡尔曼滤波器
同时定位和映射
地标
卡尔曼滤波器
计算机科学
计算机视觉
移动机器人
人工智能
职位(财务)
对象(语法)
机器人
不变扩展卡尔曼滤波器
算法
移动视界估计
财务
经济
标识
DOI:10.1109/gcis.2009.231
摘要
This paper takes the Simultaneous Localization and Mapping (SLAM) problem of mobile robot as research object and improves the FastSLAM algorithm. As the estimation precision of Extended Kalman Filter (EKF) is low, we adopt Unscented Kalman Filter (UKF) to approach the posterior distribution instead of EKF, at the same time use UKF to estimate the landmark position. We adopt adaptive resample method which resamples when needed by choosing suitable standard to reduce the depletion of samples. Theory analysis and simulation results prove that the improved algorithm can enhance the performance of SLAM effectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI