A deep matrix factorization framework for identifying underlying tissue-specific patterns of DCE-MRI: applications for molecular subtype classification in breast cancer

非负矩阵分解 矩阵分解 计算机科学 模式识别(心理学) 动态增强MRI 磁共振成像 人口 基质(化学分析) 乳腺癌 奇异值分解 人工智能 癌症 医学 放射科 物理 化学 环境卫生 内科学 量子力学 色谱法 特征向量
作者
Ming Fan,Wei Yuan,Weilu Liu,Xin Gao,Maosheng Xu,Shiwei Wang,Lihua Li
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (24): 245013-245013 被引量:1
标识
DOI:10.1088/1361-6560/ac3a25
摘要

Abstract Objective. Breast cancer is heterogeneous in that different angiogenesis and blood flow characteristics could be present within a tumor. The pixel kinetics of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can assume several distinct signal patterns related to specific tissue characteristics. Identification of the latent, tissue-specific dynamic patterns of intratumor heterogeneity can shed light on the biological mechanisms underlying the heterogeneity of tumors. Approach. To mine this information, we propose a deep matrix factorization-based dynamic decomposition (DMFDE) model specifically designed according to DCE-MRI characteristics. The time-series imaging data were decomposed into tissue-specific dynamic patterns and their corresponding proportion maps. The image pixel matrix and the reference matrix of population-level kinetics obtained by clustering the dynamic signals were used as the inputs. Two multilayer neural network branches were designed to collaboratively project the input matrix into a latent dynamic pattern and a dynamic proportion matrix, which was justified using simulated data. Clinical implications of DMFDE were assessed by radiomics analysis of proportion maps obtained from the tumor/parenchyma region for classifying the luminal A subtype. Main results. The decomposition performance of DMFDE was evaluated by the root mean square error and was shown to be better than that of the conventional convex analysis of mixtures (CAM) method. The predictive model with K = 3, 4, and 5 dynamic proportion maps generated AUC values of 0.780, 0.786 and 0.790, respectively, in distinguishing between luminal A and nonluminal A tumors, which are better than the CAM method (AUC = 0.726). The combination of statistical features from images with different proportion maps has the highest prediction value (AUC = 0.813), which is significantly higher than that based on CAM. Conclusion. This proposed method identified the latent dynamic patterns associated with different molecular subtypes, and radiomics analysis based on the pixel compositions of the uncovered dynamic patterns was able to determine molecular subtypes of breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZW完成签到,获得积分10
2秒前
学业顺利完成签到,获得积分10
2秒前
SciGPT应助Cwx2020采纳,获得10
4秒前
6秒前
6秒前
路在脚下发布了新的文献求助10
9秒前
yy完成签到 ,获得积分10
10秒前
yingrui发布了新的文献求助10
12秒前
小默完成签到,获得积分10
12秒前
cerium1925完成签到,获得积分10
13秒前
15秒前
15秒前
zxq完成签到 ,获得积分10
16秒前
Raki完成签到,获得积分10
18秒前
健壮的飞烟完成签到,获得积分10
18秒前
啦啦啦完成签到 ,获得积分10
19秒前
水寒风似刀完成签到,获得积分10
20秒前
Cwx2020发布了新的文献求助10
21秒前
张先生完成签到 ,获得积分10
24秒前
26秒前
31秒前
33秒前
九日橙发布了新的文献求助10
38秒前
Cwx2020完成签到,获得积分10
38秒前
wanci应助科研通管家采纳,获得10
40秒前
40秒前
一苇以航完成签到 ,获得积分10
41秒前
BJ_whc完成签到 ,获得积分10
42秒前
行云流水完成签到,获得积分10
42秒前
我爱康康文献完成签到 ,获得积分0
44秒前
小粒橙完成签到 ,获得积分10
44秒前
内向汽车完成签到,获得积分10
45秒前
mark发布了新的文献求助10
45秒前
wintersss完成签到,获得积分10
46秒前
松鼠15111完成签到,获得积分10
46秒前
Lucas应助研究牲采纳,获得10
48秒前
科研通AI5应助小龙仔123采纳,获得10
50秒前
Owen应助工科小白采纳,获得10
52秒前
yt完成签到,获得积分10
52秒前
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
The Handbook of Communication Skills 500
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
François Ravary SJ and a Sino-European Musical Culture in Nineteenth-Century Shanghai 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4795607
求助须知:如何正确求助?哪些是违规求助? 4116399
关于积分的说明 12734359
捐赠科研通 3845824
什么是DOI,文献DOI怎么找? 2119503
邀请新用户注册赠送积分活动 1141650
关于科研通互助平台的介绍 1030941