A deep matrix factorization framework for identifying underlying tissue-specific patterns of DCE-MRI: applications for molecular subtype classification in breast cancer

非负矩阵分解 矩阵分解 计算机科学 模式识别(心理学) 动态增强MRI 磁共振成像 人口 基质(化学分析) 乳腺癌 奇异值分解 人工智能 癌症 医学 放射科 物理 化学 环境卫生 内科学 量子力学 色谱法 特征向量
作者
Ming Fan,Wei Yuan,Weilu Liu,Xin Gao,Maosheng Xu,Shiwei Wang,Lihua Li
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (24): 245013-245013 被引量:1
标识
DOI:10.1088/1361-6560/ac3a25
摘要

Abstract Objective. Breast cancer is heterogeneous in that different angiogenesis and blood flow characteristics could be present within a tumor. The pixel kinetics of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can assume several distinct signal patterns related to specific tissue characteristics. Identification of the latent, tissue-specific dynamic patterns of intratumor heterogeneity can shed light on the biological mechanisms underlying the heterogeneity of tumors. Approach. To mine this information, we propose a deep matrix factorization-based dynamic decomposition (DMFDE) model specifically designed according to DCE-MRI characteristics. The time-series imaging data were decomposed into tissue-specific dynamic patterns and their corresponding proportion maps. The image pixel matrix and the reference matrix of population-level kinetics obtained by clustering the dynamic signals were used as the inputs. Two multilayer neural network branches were designed to collaboratively project the input matrix into a latent dynamic pattern and a dynamic proportion matrix, which was justified using simulated data. Clinical implications of DMFDE were assessed by radiomics analysis of proportion maps obtained from the tumor/parenchyma region for classifying the luminal A subtype. Main results. The decomposition performance of DMFDE was evaluated by the root mean square error and was shown to be better than that of the conventional convex analysis of mixtures (CAM) method. The predictive model with K = 3, 4, and 5 dynamic proportion maps generated AUC values of 0.780, 0.786 and 0.790, respectively, in distinguishing between luminal A and nonluminal A tumors, which are better than the CAM method (AUC = 0.726). The combination of statistical features from images with different proportion maps has the highest prediction value (AUC = 0.813), which is significantly higher than that based on CAM. Conclusion. This proposed method identified the latent dynamic patterns associated with different molecular subtypes, and radiomics analysis based on the pixel compositions of the uncovered dynamic patterns was able to determine molecular subtypes of breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dceer完成签到,获得积分10
1秒前
2秒前
3秒前
chen完成签到,获得积分10
4秒前
4秒前
Star1983发布了新的文献求助10
6秒前
RIchard发布了新的文献求助10
7秒前
8秒前
9秒前
10秒前
xiaoxin发布了新的文献求助10
10秒前
科研助手6应助cc采纳,获得10
11秒前
001完成签到,获得积分10
13秒前
大模型应助xiaoxin采纳,获得10
14秒前
hhhh完成签到,获得积分10
14秒前
超级的问筠完成签到,获得积分20
15秒前
CIXI发布了新的文献求助10
15秒前
cc完成签到 ,获得积分10
16秒前
qwe完成签到 ,获得积分10
18秒前
撸起袖子加油干关注了科研通微信公众号
18秒前
一一应助温暖怀薇采纳,获得10
19秒前
xiaoxin完成签到,获得积分20
20秒前
科研通AI5应助cugwzr采纳,获得10
21秒前
21秒前
22秒前
丛玉林完成签到,获得积分10
22秒前
cathy给cathy的求助进行了留言
22秒前
CIXI完成签到,获得积分10
24秒前
haitun发布了新的文献求助10
26秒前
香蕉擎完成签到,获得积分10
28秒前
31秒前
真金小子完成签到 ,获得积分10
31秒前
香蕉擎发布了新的文献求助10
31秒前
b萝大發完成签到,获得积分10
32秒前
JJ完成签到,获得积分10
33秒前
33秒前
陌尘完成签到,获得积分10
34秒前
科研通AI5应助卯一采纳,获得10
35秒前
山东老铁完成签到,获得积分10
36秒前
Guai完成签到,获得积分10
36秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799006
求助须知:如何正确求助?哪些是违规求助? 3344720
关于积分的说明 10321316
捐赠科研通 3061197
什么是DOI,文献DOI怎么找? 1680067
邀请新用户注册赠送积分活动 806880
科研通“疑难数据库(出版商)”最低求助积分说明 763435