A deep matrix factorization framework for identifying underlying tissue-specific patterns of DCE-MRI: applications for molecular subtype classification in breast cancer

非负矩阵分解 矩阵分解 计算机科学 模式识别(心理学) 动态增强MRI 磁共振成像 人口 基质(化学分析) 乳腺癌 奇异值分解 人工智能 癌症 医学 放射科 物理 化学 环境卫生 内科学 量子力学 色谱法 特征向量
作者
Ming Fan,Wei Yuan,Weilu Liu,Xin Gao,Maosheng Xu,Shiwei Wang,Lihua Li
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (24): 245013-245013 被引量:1
标识
DOI:10.1088/1361-6560/ac3a25
摘要

Abstract Objective. Breast cancer is heterogeneous in that different angiogenesis and blood flow characteristics could be present within a tumor. The pixel kinetics of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can assume several distinct signal patterns related to specific tissue characteristics. Identification of the latent, tissue-specific dynamic patterns of intratumor heterogeneity can shed light on the biological mechanisms underlying the heterogeneity of tumors. Approach. To mine this information, we propose a deep matrix factorization-based dynamic decomposition (DMFDE) model specifically designed according to DCE-MRI characteristics. The time-series imaging data were decomposed into tissue-specific dynamic patterns and their corresponding proportion maps. The image pixel matrix and the reference matrix of population-level kinetics obtained by clustering the dynamic signals were used as the inputs. Two multilayer neural network branches were designed to collaboratively project the input matrix into a latent dynamic pattern and a dynamic proportion matrix, which was justified using simulated data. Clinical implications of DMFDE were assessed by radiomics analysis of proportion maps obtained from the tumor/parenchyma region for classifying the luminal A subtype. Main results. The decomposition performance of DMFDE was evaluated by the root mean square error and was shown to be better than that of the conventional convex analysis of mixtures (CAM) method. The predictive model with K = 3, 4, and 5 dynamic proportion maps generated AUC values of 0.780, 0.786 and 0.790, respectively, in distinguishing between luminal A and nonluminal A tumors, which are better than the CAM method (AUC = 0.726). The combination of statistical features from images with different proportion maps has the highest prediction value (AUC = 0.813), which is significantly higher than that based on CAM. Conclusion. This proposed method identified the latent dynamic patterns associated with different molecular subtypes, and radiomics analysis based on the pixel compositions of the uncovered dynamic patterns was able to determine molecular subtypes of breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助小蜜蜂采纳,获得10
1秒前
阎曼雁发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
tdtk发布了新的文献求助10
2秒前
香蕉觅云应助害羞的广山采纳,获得10
2秒前
幻梦如歌发布了新的文献求助10
2秒前
共享精神应助lmq采纳,获得10
3秒前
夹心酱的飞踢完成签到,获得积分10
3秒前
美丽老三完成签到,获得积分20
3秒前
3秒前
3秒前
4秒前
王加通发布了新的文献求助10
4秒前
4秒前
竹林风箫完成签到,获得积分10
4秒前
5秒前
SciGPT应助ping采纳,获得10
5秒前
5秒前
顺利完成签到,获得积分20
5秒前
6秒前
NexusExplorer应助青黛采纳,获得10
6秒前
清焰完成签到,获得积分10
7秒前
7秒前
大洲完成签到,获得积分10
7秒前
研友_rLmNXn发布了新的文献求助10
7秒前
fzm完成签到,获得积分10
7秒前
踩到猫了完成签到,获得积分10
7秒前
科研通AI6应助what采纳,获得10
8秒前
8秒前
最可爱的人完成签到 ,获得积分10
8秒前
乐观秋荷应助guanshujuan采纳,获得10
8秒前
8秒前
小马甲应助李锐采纳,获得10
8秒前
lwh发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5330029
求助须知:如何正确求助?哪些是违规求助? 4469501
关于积分的说明 13909809
捐赠科研通 4362813
什么是DOI,文献DOI怎么找? 2396486
邀请新用户注册赠送积分活动 1389970
关于科研通互助平台的介绍 1360776