A Review of Text-Based Recommendation Systems

计算机科学 推荐系统 多样性(控制论) 情报检索 水准点(测量) 万维网 互联网 过程(计算) 特征(语言学) 数据科学 人工智能 语言学 哲学 大地测量学 地理 操作系统
作者
Safia Kanwal,Sidra Nawaz,Muhammad Kamran Malik,Zubair Nawaz
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 31638-31661 被引量:33
标识
DOI:10.1109/access.2021.3059312
摘要

Many websites over the Internet are producing a variety of textual data; such as news, research articles, ebooks, personal blogs, and user reviews. In these websites, the textual data is so large that the process of finding pertinent information by a user often becomes cumbersome. To overcome this issue, “Text-based Recommendation Systems (RS)” are being developed. They are the systems with the capability to find the relevant information in a minimal time using text as the primary feature. There exist several techniques to build and evaluate such systems. And though a good number of surveys compile the general attributes of recommendation systems, there is still a lack of comprehensive literature review about the text-based recommendation systems. In this paper, we present a review of the latest studies on text-based RS. We have conducted this survey by collecting literature from preeminent digital repositories, that was published during the period 2010-2020. This survey mainly covers the four major aspects of the textual based recommendation systems used in the reviewed literature. The aspects are datasets, feature extraction techniques, computational approaches, and evaluation metrics. As benchmark datasets carry a vital role in any research, publicly available datasets are extensively reviewed in this paper. Moreover, for text-based RS many proprietary datasets are also used, which are not available in the public. But we have consolidated all the attributes of these publically available and proprietary datasets to familiarize these attributes to new researchers. Furthermore, the feature extraction methods from the text are briefed and their usage in the construction of text-based RS are discussed. Later, various computational approaches that use these features are also discussed. To evaluate these systems, some evaluation metrics are adopted. We have presented an overview of these evaluation metrics and diagramed them according to their popularity. The survey concludes that Word Embedding is the widely used feature selection technique in the latest research. The survey also deduces that hybridization of text features with other features enhance the recommendation accuracy. The study highlights the fact that most of the work is on English textual data, and News recommendation is the most popular domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洁净的钢笔完成签到,获得积分10
刚刚
刚刚
Lh完成签到,获得积分10
1秒前
2秒前
安稳先生发布了新的文献求助10
2秒前
乐乐应助博修采纳,获得10
3秒前
3秒前
su完成签到,获得积分10
4秒前
桐桐应助Lz采纳,获得10
5秒前
Cytosol发布了新的文献求助10
5秒前
小二郎应助Lh采纳,获得50
6秒前
SciGPT应助健壮代柔采纳,获得10
7秒前
善学以致用应助vivi采纳,获得10
7秒前
7秒前
安稳先生完成签到,获得积分10
8秒前
Hunter发布了新的文献求助10
8秒前
DH发布了新的文献求助10
10秒前
11秒前
NexusExplorer应助pisces采纳,获得10
11秒前
黄小北发布了新的文献求助10
11秒前
WK发布了新的文献求助10
12秒前
13秒前
Akim应助Kins采纳,获得10
15秒前
科研通AI2S应助Kelly采纳,获得10
17秒前
眯眯眼的涵梅完成签到,获得积分10
18秒前
时光悠应助黄小北采纳,获得20
20秒前
我是老大应助limin采纳,获得30
21秒前
21秒前
流星完成签到,获得积分10
21秒前
23秒前
samuel发布了新的文献求助10
24秒前
lm0703完成签到,获得积分10
25秒前
博修发布了新的文献求助10
27秒前
爆米花应助whywhy采纳,获得10
27秒前
hewuan发布了新的文献求助10
27秒前
SciGPT应助sulyspr采纳,获得10
27秒前
拉普兰Z完成签到,获得积分10
27秒前
28秒前
29秒前
kinlin应助Cytosol采纳,获得10
29秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4114261
求助须知:如何正确求助?哪些是违规求助? 3652682
关于积分的说明 11566689
捐赠科研通 3356759
什么是DOI,文献DOI怎么找? 1843795
邀请新用户注册赠送积分活动 909730
科研通“疑难数据库(出版商)”最低求助积分说明 826492