计算机科学
质谱成像
可视化
软件
高动态范围
对比度(视觉)
测距
动态范围
人工智能
模式识别(心理学)
质谱法
数据挖掘
计算机视觉
化学
电信
程序设计语言
色谱法
作者
Ignacio Rosas-Román,Robert Winkler
出处
期刊:PeerJ
[PeerJ]
日期:2021-06-09
卷期号:7: e585-e585
被引量:9
摘要
Mass spectrometry imaging (MSI) enables the unbiased characterization of surfaces with respect to their chemical composition. In biological MSI, zones with differential mass profiles hint towards localized physiological processes, such as the tissue-specific accumulation of secondary metabolites, or diseases, such as cancer. Thus, the efficient discovery of ‘regions of interest’ (ROI) is of utmost importance in MSI. However, often the discovery of ROIs is hampered by high background noise and artifact signals. Especially in ambient ionization MSI, unmasking biologically relevant information from crude data sets is challenging. Therefore, we implemented a Threshold Intensity Quantization (TrIQ) algorithm for augmenting the contrast in MSI data visualizations. The simple algorithm reduces the impact of extreme values (‘outliers’) and rescales the dynamic range of mass signals. We provide an R script for post-processing MSI data in the imzML community format ( https://bitbucket.org/lababi/msi.r ) and implemented the TrIQ in our open-source imaging software RmsiGUI ( https://bitbucket.org/lababi/rmsigui/ ). Applying these programs to different biological MSI data sets demonstrated the universal applicability of TrIQ for improving the contrast in the MSI data visualization. We show that TrIQ improves a subsequent detection of ROIs by sectioning. In addition, the adjustment of the dynamic signal intensity range makes MSI data sets comparable.
科研通智能强力驱动
Strongly Powered by AbleSci AI