亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MVGCN: data integration through multi-view graph convolutional network for predicting links in biomedical bipartite networks

二部图 计算机科学 杠杆(统计) 一般化 理论计算机科学 节点(物理) 水准点(测量) 图形 复杂网络 人工智能 数据挖掘 机器学习 数学 地理 大地测量学 万维网 数学分析 工程类 结构工程
作者
Haitao Fu,Feng Huang,Xuan Li,Qi Yang,Wen Zhang
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:38 (2): 426-434 被引量:24
标识
DOI:10.1093/bioinformatics/btab651
摘要

Abstract Motivation There are various interaction/association bipartite networks in biomolecular systems. Identifying unobserved links in biomedical bipartite networks helps to understand the underlying molecular mechanisms of human complex diseases and thus benefits the diagnosis and treatment of diseases. Although a great number of computational methods have been proposed to predict links in biomedical bipartite networks, most of them heavily depend on features and structures involving the bioentities in one specific bipartite network, which limits the generalization capacity of applying the models to other bipartite networks. Meanwhile, bioentities usually have multiple features, and how to leverage them has also been challenging. Results In this study, we propose a novel multi-view graph convolution network (MVGCN) framework for link prediction in biomedical bipartite networks. We first construct a multi-view heterogeneous network (MVHN) by combining the similarity networks with the biomedical bipartite network, and then perform a self-supervised learning strategy on the bipartite network to obtain node attributes as initial embeddings. Further, a neighborhood information aggregation (NIA) layer is designed for iteratively updating the embeddings of nodes by aggregating information from inter- and intra-domain neighbors in every view of the MVHN. Next, we combine embeddings of multiple NIA layers in each view, and integrate multiple views to obtain the final node embeddings, which are then fed into a discriminator to predict the existence of links. Extensive experiments show MVGCN performs better than or on par with baseline methods and has the generalization capacity on six benchmark datasets involving three typical tasks. Availability and implementation Source code and data can be downloaded from https://github.com/fuhaitao95/MVGCN. Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
FashionBoy应助调皮帆布鞋采纳,获得10
7秒前
9秒前
蟹蟹发布了新的文献求助10
15秒前
丘比特应助蟹蟹采纳,获得10
20秒前
48秒前
1分钟前
1分钟前
1分钟前
2分钟前
HuiHui完成签到,获得积分10
2分钟前
3分钟前
pan完成签到,获得积分10
3分钟前
英俊的铭应助pan采纳,获得10
3分钟前
punch完成签到 ,获得积分10
3分钟前
bkagyin应助科研通管家采纳,获得10
4分钟前
Dannnn完成签到 ,获得积分10
4分钟前
蔡毛线完成签到,获得积分10
4分钟前
5分钟前
cdercder应助风华正茂采纳,获得30
5分钟前
ldjldj_2004完成签到 ,获得积分10
5分钟前
平常从蓉完成签到,获得积分0
6分钟前
上官若男应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
pan发布了新的文献求助10
6分钟前
张森阳发布了新的文献求助10
6分钟前
笨笨的怜雪完成签到 ,获得积分10
6分钟前
小蘑菇应助喝杯水再走采纳,获得10
6分钟前
在水一方应助DarrenVan采纳,获得10
7分钟前
科研通AI5应助凡凡采纳,获得10
7分钟前
7分钟前
DarrenVan发布了新的文献求助10
7分钟前
DarrenVan完成签到,获得积分10
7分钟前
7分钟前
传奇3应助科研通管家采纳,获得10
8分钟前
张森阳发布了新的文献求助80
8分钟前
yeah完成签到,获得积分10
9分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843229
求助须知:如何正确求助?哪些是违规求助? 3385459
关于积分的说明 10540628
捐赠科研通 3106102
什么是DOI,文献DOI怎么找? 1710848
邀请新用户注册赠送积分活动 823794
科研通“疑难数据库(出版商)”最低求助积分说明 774300