CAN3D: Fast 3D medical image segmentation via compact context aggregation

计算机科学 内存占用 分割 卷积神经网络 工作站 背景(考古学) 人工智能 深度学习 推论 图像分割 医学影像学 计算机视觉 计算机工程 生物 操作系统 古生物学
作者
Wei Dai,Boyeong Woo,Siyu Liu,Matthew Marques,Craig Engstrom,Peter B. Greer,‪Stuart Crozier‬,Jason Dowling,Shekhar S. Chandra
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:82: 102562-102562 被引量:14
标识
DOI:10.1016/j.media.2022.102562
摘要

Direct automatic segmentation of objects in 3D medical imaging, such as magnetic resonance (MR) imaging, is challenging as it often involves accurately identifying multiple individual structures with complex geometries within a large volume under investigation. Most deep learning approaches address these challenges by enhancing their learning capability through a substantial increase in trainable parameters within their models. An increased model complexity will incur high computational costs and large memory requirements unsuitable for real-time implementation on standard clinical workstations, as clinical imaging systems typically have low-end computer hardware with limited memory and CPU resources only. This paper presents a compact convolutional neural network (CAN3D) designed specifically for clinical workstations and allows the segmentation of large 3D Magnetic Resonance (MR) images in real-time. The proposed CAN3D has a shallow memory footprint to reduce the number of model parameters and computer memory required for state-of-the-art performance and maintain data integrity by directly processing large full-size 3D image input volumes with no patches required. The proposed architecture significantly reduces computational costs, especially for inference using the CPU. We also develop a novel loss function with extra shape constraints to improve segmentation accuracy for imbalanced classes in 3D MR images. Compared to state-of-the-art approaches (U-Net3D, improved U-Net3D and V-Net), CAN3D reduced the number of parameters up to two orders of magnitude and achieved much faster inference, up to 5 times when predicting with a standard commercial CPU (instead of GPU). For the open-access OAI-ZIB knee MR dataset, in comparison with manual segmentation, CAN3D achieved Dice coefficient values of (mean = 0.87 ± 0.02 and 0.85 ± 0.04) with mean surface distance errors (mean = 0.36 ± 0.32 mm and 0.29 ± 0.10 mm) for imbalanced classes such as (femoral and tibial) cartilage volumes respectively when training volume-wise under only 12G video memory. Similarly, CAN3D demonstrated high accuracy and efficiency on a pelvis 3D MR imaging dataset for prostate cancer consisting of 211 examinations with expert manual semantic labels (bladder, body, bone, rectum, prostate) now released publicly for scientific use as part of this work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Leslie采纳,获得10
1秒前
邬佑鑫发布了新的文献求助10
1秒前
优秀的枫叶完成签到,获得积分10
2秒前
CodeCraft应助同尘采纳,获得10
2秒前
muyan发布了新的文献求助10
2秒前
007发布了新的文献求助10
2秒前
mmnn完成签到 ,获得积分10
3秒前
4秒前
芒果柠檬发布了新的文献求助10
4秒前
Zo完成签到,获得积分10
5秒前
6秒前
无奈的之云完成签到,获得积分10
6秒前
6秒前
6秒前
ananludada发布了新的文献求助10
7秒前
浮游应助欢喜的荔枝采纳,获得10
8秒前
栗子完成签到,获得积分10
8秒前
淡淡的晓蓝完成签到,获得积分10
9秒前
10秒前
婕哥发布了新的文献求助10
10秒前
wbhou发布了新的文献求助10
11秒前
12秒前
赘婿应助Wwwwww采纳,获得10
12秒前
onewall发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助20
12秒前
爆米花应助善良的涵雁采纳,获得10
13秒前
高梦祥完成签到,获得积分20
13秒前
同尘发布了新的文献求助10
14秒前
赵舒坦完成签到,获得积分10
14秒前
烟花应助萧一采纳,获得10
16秒前
CodeCraft应助邬佑鑫采纳,获得10
16秒前
浮游应助唠叨的又菡采纳,获得10
17秒前
wanci应助sun采纳,获得10
17秒前
17秒前
18秒前
畅快的翎完成签到,获得积分20
18秒前
19秒前
19秒前
个性的紫菜应助Nicole采纳,获得10
20秒前
大力的小懒虫完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4969390
求助须知:如何正确求助?哪些是违规求助? 4226439
关于积分的说明 13162922
捐赠科研通 4013920
什么是DOI,文献DOI怎么找? 2196363
邀请新用户注册赠送积分活动 1209607
关于科研通互助平台的介绍 1123732