亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Cascaded Deep Learning–Based Artificial Intelligence Algorithm for Automated Lesion Detection and Classification on Biparametric Prostate Magnetic Resonance Imaging

前列腺癌 人工智能 前列腺 医学 磁共振成像 深度学习 计算机科学 分割 前列腺活检 放射科 人工神经网络 核医学 模式识别(心理学) 算法 癌症 内科学
作者
Sherif Mehralivand,Dong Yang,Stephanie A. Harmon,Daguang Xu,Ziyue Xu,Holger R. Roth,Samira Masoudi,Thomas Sanford,Deepak Kesani,Nathan Lay,María J. Merino,Bradford J. Wood,Peter A. Pinto,Peter L. Choyke,Barış Türkbey
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:29 (8): 1159-1168 被引量:26
标识
DOI:10.1016/j.acra.2021.08.019
摘要

Prostate MRI improves detection of clinically significant prostate cancer; however, its diagnostic performance has wide variation. Artificial intelligence (AI) has the potential to assist radiologists in the detection and classification of prostatic lesions. Herein, we aimed to develop and test a cascaded deep learning detection and classification system trained on biparametric prostate MRI using PI-RADS for assisting radiologists during prostate MRI read out.T2-weighted, diffusion-weighted (ADC maps, high b value DWI) MRI scans obtained at 3 Tesla from two institutions (n = 1043 in-house and n = 347 Prostate-X, respectively) acquired between 2015 to 2019 were used for model training, validation, testing. All scans were retrospectively reevaluated by one radiologist. Suspicious lesions were contoured and assigned a PI-RADS category. A 3D U-Net-based deep neural network was used to train an algorithm for automated detection and segmentation of prostate MRI lesions. Two 3D residual neural network were used for a 4-class classification task to predict PI-RADS categories 2 to 5 and BPH. Training and validation used 89% (n = 1290 scans) of the data using 5 fold cross-validation, the remaining 11% (n = 150 scans) were used for independent testing. Algorithm performance at lesion level was assessed using sensitivities, positive predictive values (PPV), false discovery rates (FDR), classification accuracy, Dice similarity coefficient (DSC). Additional analysis was conducted to compare AI algorithm's lesion detection performance with targeted biopsy results.Median age was 66 years (IQR = 60-71), PSA 6.7 ng/ml (IQR = 4.7-9.9) from in-house cohort. In the independent test set, algorithm correctly detected 111 of 198 lesions leading to 56.1% (49.3%-62.6%) sensitivity. PPV was 62.7% (95% CI 54.7%-70.7%) with FDR of 37.3% (95% CI 29.3%-45.3%). Of 79 true positive lesions, 82.3% were tumor positive at targeted biopsy, whereas of 57 false negative lesions, 50.9% were benign at targeted biopsy. Median DSC for lesion segmentation was 0.359. Overall PI-RADS classification accuracy was 30.8% (95% CI 24.6%-37.8%).Our cascaded U-Net, residual network architecture can detect, classify cancer suspicious lesions at prostate MRI with good detection, reasonable classification performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
严珍珍完成签到 ,获得积分10
1秒前
6秒前
6秒前
herococa举报刘liu求助涉嫌违规
29秒前
YifanWang应助科研通管家采纳,获得10
1分钟前
乌龟娟完成签到,获得积分10
2分钟前
herococa应助科研通管家采纳,获得10
3分钟前
herococa应助科研通管家采纳,获得10
3分钟前
herococa应助科研通管家采纳,获得10
3分钟前
h0jian09完成签到,获得积分10
3分钟前
SYLH应助kakainho采纳,获得10
3分钟前
共享精神应助栗先森采纳,获得10
3分钟前
4分钟前
栗先森发布了新的文献求助10
4分钟前
neil_match完成签到,获得积分10
4分钟前
栗先森完成签到,获得积分10
4分钟前
小布完成签到 ,获得积分0
5分钟前
herococa应助科研通管家采纳,获得20
5分钟前
YifanWang应助科研通管家采纳,获得20
5分钟前
科研通AI2S应助郭小宝采纳,获得10
5分钟前
5分钟前
郭小宝发布了新的文献求助10
5分钟前
6分钟前
6分钟前
6分钟前
慧姐完成签到,获得积分10
6分钟前
6分钟前
慧姐发布了新的文献求助10
6分钟前
anhuiwsy完成签到 ,获得积分10
6分钟前
7分钟前
7分钟前
YifanWang应助科研通管家采纳,获得30
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
8分钟前
8分钟前
海洋岩土12138完成签到 ,获得积分10
8分钟前
8分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946190
求助须知:如何正确求助?哪些是违规求助? 3491069
关于积分的说明 11058828
捐赠科研通 3222020
什么是DOI,文献DOI怎么找? 1780723
邀请新用户注册赠送积分活动 865817
科研通“疑难数据库(出版商)”最低求助积分说明 800063