The Role of Data Pre-processing Techniques in Improving Machine Learning Accuracy for Predicting Coronary Heart Disease

计算机科学 弗雷明翰风险评分 机器学习 人工智能 预处理器 心脏病 决策树 弗雷明翰心脏研究 冠状动脉 冠心病 数据预处理 随机森林 疾病 内科学 医学 动脉
作者
Osamah Sami,Yousef Elsheikh,Fadi Almasalha
出处
期刊:International Journal of Advanced Computer Science and Applications [Science and Information Organization]
卷期号:12 (6) 被引量:5
标识
DOI:10.14569/ijacsa.2021.0120695
摘要

These days, in light of the rapid developments, people work day and night to live at a good level. This often causes them to not pay much attention to a healthy lifestyle, such as what they eat or even what physical activities they do. These people are often the most likely to suffer from coronary heart disease. The heart is a small organ responsible for pumping oxygen-rich blood to the rest of the human body through the coronary arteries. Accordingly, any blockage or narrowing in one of these coronary arteries may cause blood not to be pumped to the heart and from it to the rest of the body, and thus cause what is known as heart attacks. From here, the importance of early prediction of coronary heart disease has emerged, as it can help these people change their lifestyle and eating habits to become healthier and thus prevent coronary heart disease and avoid death. This paper improve the accuracy of machine learning techniques in predicting coronary heart disease using data preprocessing techniques. Data preprocessing is a technique used to improve the efficiency of a machine learning model by improving the quality of the feature. The popular Framingham Heart Study dataset was used for validation purposes. The results of the research paper indicate that the use of data preprocessing techniques had a role in improving the predictive accuracy of poorly efficient classifiers, and shows satisfactory performance in determining the risk of coronary heart disease. For example, the Decision Tree classifier led to a predictive accuracy of coronary heart disease of 91.39% with an increase of 1.39% over the previous work, the Random Forest classifier led to a predictive accuracy of 92.80% with an increase of 2.7% over the previous work, the K-Nearest Neighbor classifier led to a predictive accuracy of 92.68% with an increase of 2.58% over the previous work, the Multilayer Perceptron Neural Network (MLP) classifier led to a predictive accuracy of 92.64% with an increase of 2.64% over the previous work, and the Na¨ıve Bayes classifier led to a predictive accuracy of 90.56% with an increase of 0.66% over the previous work.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东方一斩完成签到,获得积分10
刚刚
qiqi发布了新的文献求助10
刚刚
李健的小迷弟应助1762120采纳,获得10
1秒前
2秒前
Ww完成签到,获得积分10
3秒前
Mid发布了新的文献求助10
3秒前
坚强的刺猬关注了科研通微信公众号
3秒前
动听元彤完成签到,获得积分10
4秒前
cxy3311完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
科研通AI5应助某某采纳,获得10
7秒前
Jojoooc完成签到,获得积分20
7秒前
宝宝发布了新的文献求助10
8秒前
李健应助wl1700采纳,获得10
8秒前
打打应助内向的听云采纳,获得10
8秒前
笨考拉完成签到,获得积分10
8秒前
标致芷雪发布了新的文献求助10
9秒前
Saw完成签到,获得积分10
9秒前
10秒前
10秒前
Jojoooc发布了新的文献求助10
10秒前
坚定背包发布了新的文献求助10
10秒前
spring完成签到,获得积分20
11秒前
11秒前
huiyuan完成签到,获得积分10
11秒前
NAMU完成签到,获得积分20
12秒前
Niko完成签到,获得积分10
12秒前
wjx发布了新的文献求助10
12秒前
芷莜完成签到,获得积分20
13秒前
shetianlang完成签到 ,获得积分10
13秒前
bingsu108发布了新的文献求助10
14秒前
Mia完成签到,获得积分10
14秒前
16秒前
zzz发布了新的文献求助10
16秒前
欣喜石头完成签到,获得积分10
17秒前
xiaolianwheat完成签到,获得积分10
17秒前
peanut发布了新的文献求助10
17秒前
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789277
求助须知:如何正确求助?哪些是违规求助? 3334313
关于积分的说明 10269025
捐赠科研通 3050734
什么是DOI,文献DOI怎么找? 1674119
邀请新用户注册赠送积分活动 802497
科研通“疑难数据库(出版商)”最低求助积分说明 760692