Reading Between the Stars: Understanding the Effects of Online Customer Reviews on Product Demand

情绪分析 相关性(法律) 产品(数学) 质量(理念) 阅读(过程) 营销 计算机科学 业务 人工智能 语言学 几何学 政治学 数学 认识论 哲学 法学
作者
Hallie S. Cho,Manuel E. Sosa,Sameer Hasija
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (4): 1977-1996 被引量:14
标识
DOI:10.1287/msom.2021.1048
摘要

Problem definition: Many studies have examined quantitative customer reviews (i.e., star ratings) and found them to be a reliable source of information that has a positive effect on product demand. Yet the effect of qualitative customer reviews (i.e., text reviews) on demand has been less thoroughly studied, and it is not known whether (or how) the sentiment expressed in text reviews moderates the influence of star ratings on product demand. We are therefore led to examine how the interplay between review sentiment and star ratings affects product demand. Academic/practical relevance: Consumer perceptions of product quality and how they are shared via customer reviews are of extreme relevance to the firm, but we still do not understand how product demand is affected by the quantitative and qualitative aspects of customer reviews. Our paper seeks to fill this critical gap in the literature by analyzing star ratings, the sentiment of customer reviews, and their interaction. Methodology: Using 2002–2013 data for the U.S. automobile market, we investigate empirically the impact of star ratings and review sentiment on product demand. Thus, we estimate an aggregated multinomial choice model after performing a machine learning–based sentiment analysis on the entire corpus of customer reviews included in our sample. We take advantage of a quasi-exogenous shock to establish a causal link between online reviews and product demand. Results: We find robust empirical evidence that (i) review sentiment and star ratings both have a decreasingly positive effect on product demand and (ii) the effect (on demand) of their interaction suggests that the two components of reviews are complements. Positive sentiments in text reviews increase the positive effect of ratings when the effect of ratings is decidedly positive while they also compensate for the tendency of consumers to discount extremely high star ratings. Managerial implications: The firm should pay greater attention to quantitative and qualitative customer reviews to better understand how consumers perceive the quality of its offerings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
4秒前
5秒前
wanci应助cloud采纳,获得10
5秒前
6秒前
11111发布了新的文献求助10
6秒前
che发布了新的文献求助10
6秒前
naitangkeke发布了新的文献求助10
7秒前
哎哎发布了新的文献求助10
7秒前
9秒前
孤独聪健发布了新的文献求助10
9秒前
9秒前
科研通AI5应助幽默的蚂蚁采纳,获得10
10秒前
叶子发布了新的文献求助10
11秒前
11秒前
小白系列产品完成签到,获得积分20
12秒前
Noneone110发布了新的文献求助10
12秒前
在水一方应助隐形静芙采纳,获得10
13秒前
fgh完成签到,获得积分10
13秒前
Ava应助白茶泡泡球采纳,获得10
13秒前
lalala发布了新的文献求助10
14秒前
16秒前
科研小子发布了新的文献求助10
16秒前
哎哎完成签到,获得积分10
17秒前
ll61完成签到,获得积分10
17秒前
今后应助罗山柳采纳,获得10
19秒前
羽幻一惜发布了新的文献求助10
21秒前
嗯嗯嗯发布了新的文献求助10
21秒前
23秒前
JamesPei应助羊踯躅采纳,获得10
23秒前
24秒前
naitangkeke完成签到,获得积分10
24秒前
种烟草的狗大户完成签到,获得积分10
24秒前
顾矜应助JM采纳,获得10
26秒前
firewater发布了新的文献求助10
26秒前
犹豫依丝发布了新的文献求助10
27秒前
羽幻一惜完成签到,获得积分10
28秒前
30秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842655
求助须知:如何正确求助?哪些是违规求助? 3384676
关于积分的说明 10536643
捐赠科研通 3105227
什么是DOI,文献DOI怎么找? 1710094
邀请新用户注册赠送积分活动 823493
科研通“疑难数据库(出版商)”最低求助积分说明 774110