Graph Neural Networks: Self-supervised Learning

计算机科学 过度拟合 人工智能 机器学习 图形 借口 标记数据 构造(python库) 深度学习 人工神经网络 理论计算机科学 政治学 政治 程序设计语言 法学
作者
Yu Wang,Wei Jin,Tyler Derr
标识
DOI:10.1007/978-981-16-6054-2_18
摘要

Although deep learning has achieved state-of-the-art performance across numerous domains, these models generally require large annotated datasets to reach their full potential and avoid overfitting. However, obtaining such datasets can have high associated costs or even be impossible to procure. Self-supervised learning (SSL) seeks to create and utilize specific pretext tasks on unlabeled data to aid in alleviating this fundamental limitation of deep learning models. Although initially applied in the image and text domains, recent interest has been in leveraging SSL in the graph domain to improve the performance of graph neural networks (GNNs). For node-level tasks, GNNs can inherently incorporate unlabeled node data through the neighborhood aggregation unlike in the image or text domains; but they can still benefit by applying novel pretext tasks to encode richer information and numerous such methods have recently been developed. For GNNs solving graph-level tasks, applying SSL methods is more aligned with other traditional domains, but still presents unique challenges and has been the focus of a few works. In this chapter, we summarize recent developments in applying SSL to GNNs categorizing them via the different training strategies and types of data used to construct their pretext tasks, and finally discuss open challenges for future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玛卡巴卡发布了新的文献求助10
1秒前
1秒前
脑洞疼应助XRECP采纳,获得10
2秒前
2秒前
阿谈完成签到,获得积分10
2秒前
包容爆米花完成签到,获得积分10
2秒前
tf完成签到,获得积分10
2秒前
科研通AI6应助冰块儿采纳,获得10
3秒前
Bright发布了新的文献求助30
3秒前
4秒前
蔡毛线发布了新的文献求助10
4秒前
LYQ680906发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
九十完成签到,获得积分10
6秒前
7秒前
烟花应助乐观的幼珊采纳,获得10
7秒前
呼初南发布了新的文献求助10
7秒前
纳纳椰发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
future完成签到,获得积分10
10秒前
bkagyin应助飞跃采纳,获得10
10秒前
xixi发布了新的文献求助10
11秒前
眼睛大智宸完成签到,获得积分10
11秒前
NIKI0807发布了新的文献求助10
11秒前
乌冬会完成签到,获得积分10
12秒前
kHz完成签到,获得积分10
13秒前
儒雅儒雅发布了新的文献求助10
15秒前
15秒前
桐桐应助刘佳慧采纳,获得30
15秒前
谷槐发布了新的文献求助10
15秒前
nin发布了新的文献求助10
16秒前
16秒前
orixero应助小李采纳,获得10
16秒前
所所应助加菲丰丰采纳,获得10
16秒前
田様应助力为采纳,获得10
17秒前
简单而复杂完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264034
求助须知:如何正确求助?哪些是违规求助? 4424379
关于积分的说明 13772854
捐赠科研通 4299447
什么是DOI,文献DOI怎么找? 2359095
邀请新用户注册赠送积分活动 1355361
关于科研通互助平台的介绍 1316624