Spectral–Spatial Feature Tokenization Transformer for Hyperspectral Image Classification

计算机科学 模式识别(心理学) 人工智能 特征提取 高光谱成像 遥感 全光谱成像 特征(语言学) 像素 计算机视觉 上下文图像分类 图像分割 地质学 图像(数学) 语言学 哲学
作者
Le Sun,Guangrui Zhao,Yuhui Zheng,Zebin Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:318
标识
DOI:10.1109/tgrs.2022.3144158
摘要

In hyperspectral image (HSI) classification, each pixel sample is assigned to a land-cover category. In the recent past, convolutional neural network (CNN)-based HSI classification methods have greatly improved performance due to their superior ability to represent features. However, these methods have limited ability to obtain deep semantic features, and as the layer's number increases, computational costs rise significantly. The transformer framework can represent high-level semantic features well. In this article, a spectral–spatial feature tokenization transformer (SSFTT) method is proposed to capture spectral–spatial features and high-level semantic features. First, a spectral–spatial feature extraction module is built to extract low-level features. This module is composed of a 3-D convolution layer and a 2-D convolution layer, which are used to extract the shallow spectral and spatial features. Second, a Gaussian weighted feature tokenizer is introduced for features transformation. Third, the transformed features are input into the transformer encoder module for feature representation and learning. Finally, a linear layer is used to identify the first learnable token to obtain the sample label. Using three standard datasets, experimental analysis confirms that the computation time is less than other deep learning methods and the performance of the classification outperforms several current state-of-the-art methods. The code of this work is available at https://github.com/zgr6010/HSI_SSFTT for the sake of reproducibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
刚刚
Xx丶完成签到,获得积分10
刚刚
聿1988发布了新的文献求助10
刚刚
1秒前
悲凉的新筠完成签到,获得积分10
1秒前
1秒前
无语的又夏完成签到,获得积分10
3秒前
3秒前
5秒前
5秒前
5秒前
chengya发布了新的文献求助10
5秒前
6秒前
玮哥不是伟哥完成签到,获得积分10
7秒前
HHH发布了新的文献求助30
10秒前
酒酿是也完成签到 ,获得积分10
11秒前
11秒前
11秒前
脑洞疼应助我爱科研采纳,获得10
12秒前
星辰大海应助小李攻攻采纳,获得10
14秒前
我一进来就看到常威在打来福完成签到,获得积分10
14秒前
sylinmm完成签到,获得积分10
14秒前
醉熏的水绿完成签到 ,获得积分10
15秒前
15秒前
Silvery完成签到,获得积分10
16秒前
houfei发布了新的文献求助10
17秒前
18秒前
Ava应助踏实谷蓝采纳,获得10
20秒前
时差完成签到,获得积分10
20秒前
呵呵完成签到,获得积分10
20秒前
星辰大海应助子子子子瞻采纳,获得10
21秒前
食化狂徒发布了新的文献求助10
21秒前
22秒前
Silvery发布了新的文献求助10
23秒前
24秒前
Tess完成签到,获得积分10
24秒前
kitty关注了科研通微信公众号
26秒前
马保国123完成签到,获得积分10
27秒前
羊羊完成签到 ,获得积分10
29秒前
29秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4056230
求助须知:如何正确求助?哪些是违规求助? 3594329
关于积分的说明 11419977
捐赠科研通 3320180
什么是DOI,文献DOI怎么找? 1825613
邀请新用户注册赠送积分活动 896656
科研通“疑难数据库(出版商)”最低求助积分说明 817971