Current strategies and progress for targeting the “undruggable” transcription factors

计算生物学 转录因子 生物 药物发现 蛋白质-蛋白质相互作用 生物信息学 基因 遗传学
作者
Jingjing Zhuang,Qian Liu,Dalei Wu,Lu Tie
出处
期刊:Acta pharmacologica Sinica [Springer Nature]
卷期号:43 (10): 2474-2481 被引量:7
标识
DOI:10.1038/s41401-021-00852-9
摘要

Transcription factors (TFs) specifically bind to DNA, recruit cofactor proteins and modulate target gene expression, rendering them essential roles in the regulation of numerous biological processes. Meanwhile, mutated or dysregulated TFs are involved in a variety of human diseases. As multiple signaling pathways ultimately converge at TFs, targeting these TFs directly may prove to be more specific and cause fewer side effects, than targeting the upfront conventional targets in these pathways. All these features together endue TFs with great potential and high selectivity as therapeutic drug targets. However, TFs have been historically considered "undruggable", mainly due to their lack of structural information, especially about the appropriate ligand-binding sites and protein-protein interactions, leading to relatively limited choices in the TF-targeting drug design. In this review, we summarize the recent progress of TF-targeting drugs and highlight certain strategies used for targeting TFs, with a number of representative drugs that have been approved or in the clinical trials as examples. Various approaches in targeting TFs directly or indirectly have been developed. Common direct strategies include aiming at defined binding pockets, proteolysis-targeting chimaera (PROTAC), and mutant protein reactivation. In contrast, the indirect ones comprise inhibition of protein-protein interactions between TF and other proteins, blockade of TF expression, targeting the post-translational modifications, and targeting the TF-DNA interactions. With more comprehensive structural information about TFs revealed by the powerful cryo-electron microscopy technology and predicted by machine-learning algorithms, plus more efficient compound screening platforms and a deeper understanding of TF-disease relationships, the development of TF-targeting drugs will certainly be accelerated in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助yyh12138采纳,获得10
2秒前
小蘑菇应助缓慢又蓝采纳,获得20
2秒前
2秒前
111发布了新的文献求助10
3秒前
4秒前
旅途之人完成签到,获得积分10
5秒前
6秒前
7秒前
Mao完成签到,获得积分10
8秒前
脑洞疼应助山山而川采纳,获得10
9秒前
水灯霖发布了新的文献求助30
10秒前
Echo1128完成签到 ,获得积分10
10秒前
Accept2024发布了新的文献求助30
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
天天快乐应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
13秒前
安静的飞珍完成签到,获得积分10
15秒前
16秒前
18秒前
奋斗藏花发布了新的文献求助10
18秒前
川上富江发布了新的文献求助10
18秒前
科研通AI5应助111采纳,获得10
18秒前
飘逸的麦片完成签到,获得积分10
20秒前
21秒前
HPP123完成签到,获得积分10
22秒前
多情的青烟完成签到,获得积分20
23秒前
吉吉完成签到,获得积分10
23秒前
自然黄豆应助洁净之柔采纳,获得10
24秒前
25秒前
桐桐应助伶俐老头采纳,获得10
28秒前
30秒前
自然黄豆发布了新的文献求助10
31秒前
川上富江完成签到,获得积分10
31秒前
尺子尺子和池子完成签到 ,获得积分10
33秒前
35秒前
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782187
求助须知:如何正确求助?哪些是违规求助? 3327590
关于积分的说明 10232533
捐赠科研通 3042546
什么是DOI,文献DOI怎么找? 1670040
邀请新用户注册赠送积分活动 799600
科研通“疑难数据库(出版商)”最低求助积分说明 758844