亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Probabilistic seismic analysis of bridges through machine learning approaches

概率逻辑 计算机科学 参数统计 桥(图论) 地震动 灵活性(工程) 机器学习 工程类 人工智能 数学 结构工程 统计 医学 内科学
作者
Farahnaz Soleimani
出处
期刊:Structures [Elsevier]
卷期号:38: 157-167 被引量:15
标识
DOI:10.1016/j.istruc.2022.02.006
摘要

Probabilistic seismic demands of bridge components such as bridge column and deck are conventionally expressed as a power-law function of a single ground motion intensity measure. This unidimensional probabilistic seismic demand model (PSDM) was introduced more than two decades ago, and since then, it was commonly used to estimate seismic demands. Over the recent years, an extensive body of research has been evolved to propose alternative PSDMs, but none has been proved to be dominantly superior over other approaches. There yet remains a milestone to enrich predictions provided by PSDMs and expanding their application beyond certain methodology, particular functional form, and corresponding assumptions on the distribution of the demands. Given the advancements in computational technologies which lead to the growth of diverse analytically-driven data, machine learning (ML) approaches have a tremendous potential to revolutionize predictions of seismic demands. This study presents a comprehensive appraisal of ML-based PSDMs to further expand the research advances in this domain and leverage the efficiency and advantages that ML methods offer compared to the unidimensional model. To this end, the efficiency of a variety of parametric and non-parametric ML algorithms with different degrees of flexibility are explored to estimate the demands associated with the primary bridge components. Moreover, by applying ML-based variable selection techniques, this study assesses the level of influence of the random variables on the generated PSDMs. These variables are used for the treatment of inherent uncertainties in material, geometric, structural, and ground motion parameters. As part of the appraisal, a ranking is provided for the investigated 39 models, such as Generalized Linear Models, Multi-order regressions, Bagging and Boosting, and Kernel-based models, according to their statistical performance in estimating the individual demands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酒渡完成签到,获得积分10
刚刚
李春鸿完成签到,获得积分10
1秒前
2秒前
月月完成签到 ,获得积分10
2秒前
海洋球发布了新的文献求助10
4秒前
6秒前
11秒前
Su完成签到,获得积分10
18秒前
高兴的萤完成签到 ,获得积分10
20秒前
我是老大应助神勇的又槐采纳,获得10
22秒前
矮小的元灵完成签到,获得积分20
24秒前
天天快乐应助小薇采纳,获得10
24秒前
28秒前
CometF完成签到 ,获得积分10
29秒前
神勇的又槐完成签到,获得积分10
31秒前
懒回顾发布了新的文献求助10
31秒前
小薇完成签到,获得积分10
36秒前
43秒前
Jello发布了新的文献求助10
49秒前
啊鹏鹏发布了新的文献求助10
53秒前
充电宝应助科研通管家采纳,获得10
53秒前
搜集达人应助科研通管家采纳,获得10
53秒前
浮游应助科研通管家采纳,获得10
54秒前
浮游应助科研通管家采纳,获得10
54秒前
56秒前
天宇南神完成签到 ,获得积分10
56秒前
于富强完成签到 ,获得积分20
57秒前
李爱国应助MgZn采纳,获得10
1分钟前
1分钟前
也是难得取个名完成签到 ,获得积分10
1分钟前
1分钟前
元神完成签到 ,获得积分10
1分钟前
科目三应助只为更出色采纳,获得10
1分钟前
1分钟前
王彦霖完成签到,获得积分10
1分钟前
1分钟前
Su发布了新的文献求助20
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI6应助sfwer采纳,获得30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509353
求助须知:如何正确求助?哪些是违规求助? 4604314
关于积分的说明 14489571
捐赠科研通 4539026
什么是DOI,文献DOI怎么找? 2487276
邀请新用户注册赠送积分活动 1469709
关于科研通互助平台的介绍 1441934