化学信息学
药物发现
计算机科学
虚拟筛选
机器学习
过程(计算)
质量(理念)
生物标志物发现
人工智能
数据科学
药品
制药工业
数据质量
数据挖掘
化学
药理学
工程类
医学
生物信息学
生物
基因
认识论
操作系统
哲学
公制(单位)
生物化学
蛋白质组学
运营管理
作者
Sethu Arun Kumar,T. Durai Ananda Kumar,Narasimha M Beeraka,Gurubasavaraj V. Pujar,Manisha Singh,H S Akshatha,Meduri Bhagyalalitha
标识
DOI:10.4155/fmc-2021-0243
摘要
Predicting novel small molecule bioactivities for the target deconvolution, hit-to-lead optimization in drug discovery research, requires molecular representation. Previous reports have demonstrated that machine learning (ML) and deep learning (DL) have substantial implications in virtual screening, peptide synthesis, drug ADMET screening and biomarker discovery. These strategies can increase the positive outcomes in the drug discovery process without false-positive rates and can be achieved in a cost-effective way with a minimum duration of time by high-quality data acquisition. This review substantially discusses the recent updates in AI tools as cheminformatics application in medicinal chemistry for the data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry while improving small-molecule bioactivities and properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI