Advancements of MRI-Based Brain Tumor Segmentation from Traditional to Recent Trends- A Review

分割 脑瘤 磁共振成像 白质 人工智能 计算机科学 灰质 深度学习 医学
作者
Padmapriya Thiyagarajan,Sriramakrishnan Padmanaban,Kalaiselvi Thiruvenkadam,Somasundaram Karuppanagounder
出处
期刊:Current Medical Imaging Reviews [Bentham Science Publishers]
卷期号:17
标识
DOI:10.2174/1573405617666211215111937
摘要

Background: Among the brain-related diseases, brain tumor segmentation on magnetic resonance imaging (MRI) scans is one of the highly focused research domains in the medical community. Brain tumor segmentation is a very challenging task due to its asymmetric form and uncertain boundaries. This process segregates the tumor region into the active tumor, necrosis and edema from normal brain tissues such as white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF). Introduction: The proposed paper analyzed the advancement of brain tumor segmentation from conventional image processing techniques, to deep learning through machine learning on MRI of human head scans. Method: State-of-the-art methods of these three techniques are investigated, and the merits and demerits are discussed. Results: The prime motivation of the paper is to instigate the young researchers towards the development of efficient brain tumor segmentation techniques using conventional and recent technologies. Conclusion: The proposed analysis concluded that the conventional and machine learning methods were mostly applied for brain tumor detection, whereas deep learning methods were good at tumor substructures segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
朱迪发布了新的文献求助10
1秒前
2秒前
白杨完成签到 ,获得积分10
2秒前
2秒前
3秒前
海封发布了新的文献求助10
3秒前
SYLH应助典雅的静采纳,获得10
4秒前
4秒前
GGbond完成签到,获得积分20
4秒前
小蘑菇应助ardejiang采纳,获得10
4秒前
科研通AI5应助Culto采纳,获得10
5秒前
可靠从云发布了新的文献求助10
5秒前
所所应助living笑白采纳,获得10
5秒前
5秒前
6秒前
6秒前
nana发布了新的文献求助10
6秒前
yc发布了新的文献求助10
6秒前
852应助飞宇采纳,获得10
7秒前
永远明媚完成签到,获得积分10
7秒前
7秒前
研途顺利发布了新的文献求助10
7秒前
Kismet完成签到,获得积分10
8秒前
lulusheng发布了新的文献求助10
8秒前
8秒前
8秒前
alexye619发布了新的文献求助10
9秒前
科研通AI2S应助独特的舞仙采纳,获得10
9秒前
江峰应助晃悠猴采纳,获得10
9秒前
咎穆完成签到,获得积分20
10秒前
迷你的烙完成签到,获得积分10
10秒前
fanny完成签到 ,获得积分10
10秒前
沉默发布了新的文献求助10
10秒前
11秒前
Jinyang完成签到 ,获得积分10
11秒前
roclie完成签到,获得积分10
11秒前
健忘的伟宸完成签到,获得积分10
11秒前
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785258
求助须知:如何正确求助?哪些是违规求助? 3330815
关于积分的说明 10248481
捐赠科研通 3046259
什么是DOI,文献DOI怎么找? 1671915
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868