Deep Learning-Based Cataract Detection and Grading from Slit-Lamp and Retro-Illumination Photographs

裂隙灯 狭缝 分级(工程) 人工智能 计算机科学 计算机视觉 验光服务 眼科 光学 医学 工程类 物理 土木工程
作者
Ki Young Son,Jongwoo Ko,Eunseok Kim,Si Young Lee,Min‐Ji Kim,Jisang Han,Eunhae Shin,Tae‐Young Chung,Dong Hui Lim
出处
期刊:Ophthalmology science [Elsevier BV]
卷期号:2 (2): 100147-100147 被引量:21
标识
DOI:10.1016/j.xops.2022.100147
摘要

To develop and validate an automated deep learning (DL)-based artificial intelligence (AI) platform for diagnosing and grading cataracts using slit-lamp and retroillumination lens photographs based on the Lens Opacities Classification System (LOCS) III.Cross-sectional study in which a convolutional neural network was trained and tested using photographs of slit-lamp and retroillumination lens photographs.One thousand three hundred thirty-five slit-lamp images and 637 retroillumination lens images from 596 patients.Slit-lamp and retroillumination lens photographs were graded by 2 trained graders using LOCS III. Image datasets were labeled and divided into training, validation, and test datasets. We trained and validated AI platforms with 4 key strategies in the AI domain: (1) region detection network for redundant information inside data, (2) data augmentation and transfer learning for the small dataset size problem, (3) generalized cross-entropy loss for dataset bias, and (4) class balanced loss for class imbalance problems. The performance of the AI platform was reinforced with an ensemble of 3 AI algorithms: ResNet18, WideResNet50-2, and ResNext50.Diagnostic and LOCS III-based grading prediction performance of AI platforms.The AI platform showed robust diagnostic performance (area under the receiver operating characteristic curve [AUC], 0.9992 [95% confidence interval (CI), 0.9986-0.9998] and 0.9994 [95% CI, 0.9989-0.9998]; accuracy, 98.82% [95% CI, 97.7%-99.9%] and 98.51% [95% CI, 97.4%-99.6%]) and LOCS III-based grading prediction performance (AUC, 0.9567 [95% CI, 0.9501-0.9633] and 0.9650 [95% CI, 0.9509-0.9792]; accuracy, 91.22% [95% CI, 89.4%-93.0%] and 90.26% [95% CI, 88.6%-91.9%]) for nuclear opalescence (NO) and nuclear color (NC) using slit-lamp photographs, respectively. For cortical opacity (CO) and posterior subcapsular opacity (PSC), the system achieved high diagnostic performance (AUC, 0.9680 [95% CI, 0.9579-0.9781] and 0.9465 [95% CI, 0.9348-0.9582]; accuracy, 96.21% [95% CI, 94.4%-98.0%] and 92.17% [95% CI, 88.6%-95.8%]) and good LOCS III-based grading prediction performance (AUC, 0.9044 [95% CI, 0.8958-0.9129] and 0.9174 [95% CI, 0.9055-0.9295]; accuracy, 91.33% [95% CI, 89.7%-93.0%] and 87.89% [95% CI, 85.6%-90.2%]) using retroillumination images.Our DL-based AI platform successfully yielded accurate and precise detection and grading of NO and NC in 7-level classification and CO and PSC in 6-level classification, overcoming the limitations of medical databases such as few training data or biased label distribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
vae发布了新的文献求助10
1秒前
3秒前
火箭Lucky完成签到 ,获得积分10
4秒前
张宏宇发布了新的文献求助10
4秒前
大模型应助heheha采纳,获得10
5秒前
感动水杯完成签到 ,获得积分10
5秒前
榴下晨光完成签到 ,获得积分10
7秒前
liyang999完成签到,获得积分10
9秒前
ponysmile发布了新的文献求助10
9秒前
研友_Y59785应助激情的乌龟采纳,获得10
10秒前
加油完成签到 ,获得积分10
14秒前
幽默的小之完成签到,获得积分10
15秒前
吃不胖的完成签到 ,获得积分10
17秒前
cjjwei完成签到 ,获得积分10
17秒前
流沙无言完成签到 ,获得积分10
22秒前
Zhangfu完成签到,获得积分10
23秒前
24秒前
赵田完成签到 ,获得积分10
26秒前
科研通AI5应助ponysmile采纳,获得10
26秒前
秦淮发布了新的文献求助10
28秒前
科研通AI2S应助甜甜的难敌采纳,获得10
30秒前
30秒前
激昂的向珊完成签到,获得积分10
30秒前
害羞便当发布了新的文献求助10
34秒前
ricown完成签到,获得积分10
35秒前
秦淮完成签到,获得积分20
35秒前
王文静完成签到,获得积分10
36秒前
科目三应助vae采纳,获得10
36秒前
科研通AI5应助科研通管家采纳,获得10
36秒前
汉堡包应助科研通管家采纳,获得10
36秒前
Gauss应助科研通管家采纳,获得30
36秒前
充电宝应助科研通管家采纳,获得10
36秒前
汉堡包应助木偶采纳,获得10
37秒前
wonwojo完成签到 ,获得积分10
38秒前
一笑奈何完成签到,获得积分10
39秒前
伶俐碧萱完成签到 ,获得积分10
40秒前
42秒前
千山完成签到,获得积分10
43秒前
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779589
求助须知:如何正确求助?哪些是违规求助? 3325050
关于积分的说明 10221197
捐赠科研通 3040176
什么是DOI,文献DOI怎么找? 1668673
邀请新用户注册赠送积分活动 798729
科研通“疑难数据库(出版商)”最低求助积分说明 758535