Fusion of Mask RCNN and attention mechanism for instance segmentation of apples under complex background

分割 人工智能 计算机科学 模式识别(心理学) 果园 计算机视觉 苹果属植物 卷积神经网络 园艺 生物
作者
Dandan Wang,Dongjian He
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:196: 106864-106864 被引量:90
标识
DOI:10.1016/j.compag.2022.106864
摘要

It is important to precisely segment apples in an orchard during the growth period to obtain accurate growth information. However, the complex environmental factors and growth characteristics, such as fluctuating illumination, overlapping and occlusion of apples, the gradual change in the ground colour of apples from green to red, and the similarities between immature apples and background leaves, affect apple segmentation accuracy. The purpose of this study was to develop a precise apple instance segmentation method based on an improved Mask region-based convolutional neural network (Mask RCNN). An existing Mask RCNN model was improved by fusing an attention module into the backbone network to enhance its feature extraction ability. A combination of deformable convolution and the transformer attention with the key content only term was used as the attention module in this study. The experimental results showed that the improved Mask RCNN can accurately segment apples under various conditions, such as apples with shadows and different ground colours, overlapped apples, and apples occluded by branches and leaves. A recall, precision, F1 score, and segmentation mAP of 97.1%, 95.8%, 96.4% and 0.917, respectively, were achieved, and the average run-time on the test set was 0.25 s per image. Our method outperformed the two methods in comparison, indicating that it can accurately segment apples in the growth stage with a near real-time performance. This study lays the foundation for realizing accurate fruit detection and long-term automatic growth monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdercder应助老广采纳,获得10
1秒前
2秒前
上官若男应助luwei采纳,获得10
4秒前
诚心凝蝶完成签到,获得积分10
5秒前
传奇3应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
wen应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
周二完成签到,获得积分10
6秒前
由雨柏发布了新的文献求助10
7秒前
情怀应助ni采纳,获得10
11秒前
14秒前
科研通AI5应助等待盼雁采纳,获得10
15秒前
林子完成签到,获得积分10
16秒前
yuaner发布了新的文献求助10
19秒前
甜甜圈发布了新的文献求助10
20秒前
20秒前
完美世界应助xiaoxiao采纳,获得10
22秒前
脑洞疼应助乙二胺四乙酸采纳,获得10
26秒前
等待盼雁发布了新的文献求助10
26秒前
livinglast完成签到 ,获得积分10
26秒前
29秒前
pgmm发布了新的文献求助10
30秒前
30秒前
35秒前
35秒前
妮儿发布了新的文献求助10
35秒前
36秒前
38秒前
刘伟发布了新的文献求助10
40秒前
111发布了新的文献求助10
43秒前
思源应助甜甜圈采纳,获得10
44秒前
46秒前
由雨柏完成签到,获得积分10
46秒前
菟丝子完成签到 ,获得积分10
46秒前
天天快乐应助刘伟采纳,获得10
49秒前
jenningseastera应助Raymond采纳,获得10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778778
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217992
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668089
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758415