Fusion of Mask RCNN and attention mechanism for instance segmentation of apples under complex background

分割 人工智能 计算机科学 模式识别(心理学) 果园 计算机视觉 苹果属植物 卷积神经网络 园艺 生物
作者
Dandan Wang,Dongjian He
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:196: 106864-106864 被引量:90
标识
DOI:10.1016/j.compag.2022.106864
摘要

It is important to precisely segment apples in an orchard during the growth period to obtain accurate growth information. However, the complex environmental factors and growth characteristics, such as fluctuating illumination, overlapping and occlusion of apples, the gradual change in the ground colour of apples from green to red, and the similarities between immature apples and background leaves, affect apple segmentation accuracy. The purpose of this study was to develop a precise apple instance segmentation method based on an improved Mask region-based convolutional neural network (Mask RCNN). An existing Mask RCNN model was improved by fusing an attention module into the backbone network to enhance its feature extraction ability. A combination of deformable convolution and the transformer attention with the key content only term was used as the attention module in this study. The experimental results showed that the improved Mask RCNN can accurately segment apples under various conditions, such as apples with shadows and different ground colours, overlapped apples, and apples occluded by branches and leaves. A recall, precision, F1 score, and segmentation mAP of 97.1%, 95.8%, 96.4% and 0.917, respectively, were achieved, and the average run-time on the test set was 0.25 s per image. Our method outperformed the two methods in comparison, indicating that it can accurately segment apples in the growth stage with a near real-time performance. This study lays the foundation for realizing accurate fruit detection and long-term automatic growth monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南风发布了新的文献求助30
1秒前
attention完成签到,获得积分10
2秒前
Shulin发布了新的文献求助10
2秒前
桐桐应助愉快的花卷采纳,获得10
3秒前
关我屁事完成签到 ,获得积分10
3秒前
4秒前
4秒前
5秒前
鲜蘑完成签到,获得积分10
5秒前
沼泽应助健康的肺采纳,获得10
5秒前
6秒前
6秒前
Crest完成签到,获得积分10
6秒前
超级的访天完成签到,获得积分10
7秒前
布吉岛完成签到 ,获得积分10
7秒前
鲜蘑发布了新的文献求助10
8秒前
斯文败类应助雪雪儿采纳,获得10
10秒前
唐泽雪穗应助拼搏从灵采纳,获得10
10秒前
老李猪猪发布了新的文献求助10
11秒前
11秒前
attention发布了新的文献求助10
11秒前
11秒前
12秒前
开心新瑶发布了新的文献求助10
12秒前
13秒前
VDoo完成签到,获得积分10
13秒前
victor应助wwsss采纳,获得10
13秒前
13秒前
蓝色花生豆完成签到,获得积分10
14秒前
铅笔菌完成签到,获得积分10
16秒前
木蒙蒙发布了新的文献求助10
17秒前
17秒前
shiny发布了新的文献求助10
18秒前
Arrebol发布了新的文献求助10
18秒前
ztt完成签到,获得积分10
19秒前
彭于晏应助yoon采纳,获得10
19秒前
20秒前
20秒前
隐形曼青应助C7_采纳,获得10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4739366
求助须知:如何正确求助?哪些是违规求助? 4090724
关于积分的说明 12654039
捐赠科研通 3800150
什么是DOI,文献DOI怎么找? 2098475
邀请新用户注册赠送积分活动 1123930
科研通“疑难数据库(出版商)”最低求助积分说明 999140