Defect-suppressed submillimeter-scale WS2 single crystals with high photoluminescence quantum yields by alternate-growth-etching CVD

光致发光 单层 产量(工程) 材料科学 蚀刻(微加工) 化学气相沉积 光电子学 Crystal(编程语言) 增长率 单晶 纳米技术 化学工程 结晶学 化学 复合材料 图层(电子) 几何学 数学 计算机科学 工程类 程序设计语言
作者
Xing Xin,Yanmei Zhang,Jia‐Mei Chen,Maolin Chen,Wei Xin,Mengfan Ding,Youzhe Bao,Weizhen Liu,Haiyang Xu,Yichun Liu
出处
期刊:Materials horizons [Royal Society of Chemistry]
卷期号:9 (9): 2416-2424 被引量:6
标识
DOI:10.1039/d2mh00721e
摘要

Defects, such as uncontrollable vacancies, will intensively degrade the material properties and device performance of CVD-grown transition metal dichalcogenides (TMDs). Although vacancies can be repaired by some post-processing measures, these treatments are usually time-consuming, complicated and may introduce uncontrollable chemical contaminants into TMDs. How to efficiently suppress the uncontrollable defects during CVD growth and acquire intrinsic high-quality CVD-grown TMDs without any after-treatment remains a critical challenge, and has not yet been well resolved. Here, an alternate-growth-etching (AGE) CVD method was demonstrated to fabricate defect-suppressed submillimeter-scale monolayer WS2 single crystals. Compared with normal CVD, the grain size of the as-grown WS2 can be enlarged by 4-5 times (∼520 μm) and the growth rate of ∼14.4 μm min-1 is also at a high level compared to reported results. Moreover, AGE-CVD can efficiently suppress atomic vacancies in WS2. In every growth-etching cycle, the etching of WS2 occurs preferentially at the defective sites, which will be healed at the following growth stage. As a result, WS2 monolayers obtained by AGE-CVD possess higher crystal quality, carrier mobility (8.3 cm2 V-1 s-1) and PL quantum yield (QY, 52.6%) than those by normal CVD. In particular, such a PL QY is the highest value ever reported for in situ CVD-grown TMDs without any after-treatment, and is even comparable to the values of mechanically exfoliated samples. This AGE-CVD method is also appropriate for the synthesis of other high-quality TMD single crystals on a large-scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨后完成签到 ,获得积分10
1秒前
cdercder应助小熊采纳,获得30
1秒前
Zhengkeke发布了新的文献求助50
2秒前
亚当完成签到 ,获得积分10
3秒前
orixero应助姽婳wy采纳,获得10
4秒前
4秒前
7秒前
赵雨霏完成签到 ,获得积分10
7秒前
番茄炒蛋完成签到,获得积分10
7秒前
xin完成签到,获得积分10
7秒前
study发布了新的文献求助10
9秒前
哒哒发布了新的文献求助10
17秒前
漂亮的盼波完成签到 ,获得积分10
17秒前
优美巧曼完成签到 ,获得积分10
17秒前
17秒前
18秒前
cckyt完成签到,获得积分10
19秒前
独特的高山完成签到 ,获得积分10
19秒前
日光下完成签到 ,获得积分10
19秒前
Derik完成签到,获得积分10
20秒前
xin发布了新的文献求助10
22秒前
阡陌完成签到,获得积分10
25秒前
27秒前
科研通AI5应助沉静胜采纳,获得30
27秒前
充电宝应助哒哒采纳,获得10
30秒前
32秒前
zlf完成签到,获得积分10
33秒前
33秒前
34秒前
34秒前
34秒前
35秒前
37秒前
38秒前
沉静胜发布了新的文献求助30
40秒前
林屿溪完成签到,获得积分10
42秒前
42秒前
姽婳wy发布了新的文献求助10
42秒前
qiao应助kinly199采纳,获得10
42秒前
shine发布了新的文献求助30
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776393
求助须知:如何正确求助?哪些是违规求助? 3321780
关于积分的说明 10207872
捐赠科研通 3037141
什么是DOI,文献DOI怎么找? 1666541
邀请新用户注册赠送积分活动 797578
科研通“疑难数据库(出版商)”最低求助积分说明 757872