Enhancing classification of cells procured from bone marrow aspirate smears using generative adversarial networks and sequential convolutional neural network

计算机科学 卷积神经网络 分类器(UML) 人工智能 Softmax函数 生成对抗网络 骨髓抽出物 深度学习 鉴别器 骨髓 模式识别(心理学) 发电机(电路理论) 机器学习 病理 医学 功率(物理) 物理 探测器 电信 量子力学
作者
Debapriya Hazra,Yung-Cheol Byun,Woo Jin Kim
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:224: 107019-107019 被引量:16
标识
DOI:10.1016/j.cmpb.2022.107019
摘要

Leukemia represents 30% of all pediatric cancers and is considered the most common malignancy affecting adults and children. Cell differential count obtained from bone marrow aspirate smears is crucial for diagnosing hematologic diseases. Classification of these cell types is an essential task towards analyzing the disease, but it is time-consuming and requires intensive manual intervention. While machine learning has shown excellent outcomes in automating medical diagnosis, it needs ample data to build an efficient model for real-world tasks. This paper aims to generate synthetic data to enhance the classification accuracy of cells obtained from bone marrow aspirate smears.A three-stage architecture has been proposed. We first collaborate with experts from the medical domain to prepare a dataset that consolidates microscopic cell images obtained from bone marrow aspirate smears from three different sources. The second stage involves a generative adversarial networks (GAN) model to generate synthetic microscopic cell images. We propose a GAN model consisting of three networks; generator discriminator and classifier. We train the GAN model with the loss function of Wasserstein GAN with gradient penalty (WGAN-GP). Since our GAN has an additional classifier and was trained using WGAN-GP, we named our model C-WGAN-GP. In the third stage, we propose a sequential convolutional neural network (CNN) to classify cells in the original and synthetic dataset to demonstrate how generating synthetic data and utilizing a simple sequential CNN model can enhance the accuracy of cell classification.We validated the proposed C-WGAN-GP and sequential CNN model with various evaluation metrics and achieved a classification accuracy of 96.98% using the synthetic dataset. We have presented each cell type's accuracy, specificity, and sensitivity results. The sequential CNN model achieves the highest accuracy for neutrophils with an accuracy rate of 97.5%. The highest value for sensitivity and specificity are 97.1% and 97%. Our proposed GAN model achieved an inception score of 14.52 ± 0.10, significantly better than the existing GAN models.Using three network GAN architecture produced more realistic synthetic data than existing models. Sequential CNN model with the synthetic data achieved higher classification accuracy than the original data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xhm完成签到 ,获得积分10
刚刚
LZY完成签到,获得积分10
1秒前
科研小白完成签到,获得积分10
2秒前
言庭兰玉完成签到,获得积分10
2秒前
song完成签到 ,获得积分10
3秒前
七七完成签到 ,获得积分10
3秒前
4秒前
4秒前
白桃乌龙完成签到,获得积分10
5秒前
HCLonely完成签到,获得积分0
5秒前
王冬雪完成签到,获得积分10
5秒前
小袁完成签到,获得积分10
6秒前
6秒前
断章完成签到 ,获得积分10
8秒前
太空工程师完成签到,获得积分10
10秒前
10秒前
yier完成签到,获得积分10
10秒前
酸辣完成签到 ,获得积分10
11秒前
Arthur完成签到 ,获得积分10
11秒前
夏来应助今天没有哭鸭采纳,获得10
12秒前
尊敬寒松完成签到,获得积分10
12秒前
14秒前
wwyy完成签到,获得积分10
15秒前
拉宝了完成签到,获得积分10
16秒前
壮观的不评完成签到 ,获得积分10
17秒前
cwb完成签到,获得积分10
17秒前
老迟到的幼枫完成签到,获得积分10
18秒前
灰色与青完成签到,获得积分10
19秒前
JamesPei应助王志杰采纳,获得10
21秒前
cwb发布了新的文献求助10
21秒前
小野狼完成签到,获得积分10
22秒前
大脸猫完成签到 ,获得积分10
22秒前
迷你的夜天完成签到 ,获得积分10
23秒前
23秒前
23秒前
称心采枫完成签到 ,获得积分10
24秒前
哎呀哎呀呀完成签到,获得积分10
25秒前
丘比特应助能干的幻丝采纳,获得10
25秒前
你好纠结伦完成签到,获得积分10
25秒前
六步郎完成签到,获得积分10
26秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808162
求助须知:如何正确求助?哪些是违规求助? 3352812
关于积分的说明 10360575
捐赠科研通 3068839
什么是DOI,文献DOI怎么找? 1685271
邀请新用户注册赠送积分活动 810410
科研通“疑难数据库(出版商)”最低求助积分说明 766113