Chinese public opinion on Japan's nuclear wastewater discharge: A case study of Weibo comments based on a thematic model

社会化媒体 舆论 主题分析 公众参与 潜在Dirichlet分配 平面图(考古学) 政府(语言学) 情绪分析 微博 业务 公共关系 政治学 主题模型 计算机科学 社会学 地理 人工智能 法学 社会科学 定性研究 考古 哲学 政治 语言学
作者
Xujin Pu,Qianyun Jiang,Bi Fan
出处
期刊:Ocean & Coastal Management [Elsevier BV]
卷期号:225: 106188-106188 被引量:35
标识
DOI:10.1016/j.ocecoaman.2022.106188
摘要

Japan's plan to dump nuclear wastewater into the sea has generated a tremendous amount of discussion on social media due to the potential wide-ranging impact. To our knowledge, few studies have mined social media platforms to assess similar pollution concerns. We use the Octopus Collector to collect online textual data regarding “Japan's plan to dump nuclear wastewater into the sea” from Sina Weibo since April 13, 2021. After the posts from Sina Weibo were preprocessed, user opinions were analyzed using natural language processing. We used a naive Bayes classifier for sentiment analysis and latent dirichlet allocation (LDA) to extract and cluster topics from the posts, allowing for users' related opinions to be mined and analyzed. The study found that there were three major themes in terms of public concern: nuclear pollution and marine ecology, seafood imports and food safety, and international responsibility and public ethics. In our emotional analysis, we found that most people expressed negative emotions about the plan. However, there was also a positive emotional aspect because, with the release of relevant information and the popularization of knowledge, the public has been able to have a rational discussion about the consequences of this event, and the topic includes a focus on positive factors such as environmental protection and sustainable development. For this reason, the government and relevant agencies should keep up-to-date with the latest news of the incident to further raise public awareness and lead the public to a rational discussion to avoid excessive negative emotions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助miku1采纳,获得10
1秒前
fengxi完成签到,获得积分10
1秒前
迷路的硬币完成签到,获得积分10
1秒前
酷波er应助天真的晓霜采纳,获得10
1秒前
Estrella发布了新的文献求助10
1秒前
科研通AI2S应助紧张的绿茶采纳,获得10
2秒前
zhx245259630完成签到,获得积分10
4秒前
xyzlancet完成签到,获得积分10
4秒前
猪猪hero发布了新的文献求助10
4秒前
超帅青旋完成签到,获得积分20
5秒前
6秒前
6秒前
9秒前
泽锦臻完成签到 ,获得积分10
11秒前
可爱的函函应助研友_5Zl9D8采纳,获得10
11秒前
langjidong完成签到,获得积分10
12秒前
12秒前
chestnut灬完成签到 ,获得积分10
12秒前
凡人修仙完成签到,获得积分10
13秒前
miku1发布了新的文献求助10
13秒前
冬冬完成签到,获得积分10
13秒前
皇甫藏鸟完成签到,获得积分10
13秒前
13秒前
无限妙旋完成签到,获得积分10
13秒前
ABCDEFG发布了新的文献求助10
14秒前
星辰大海应助skyfall采纳,获得10
15秒前
15秒前
斯文败类应助丫丫采纳,获得10
15秒前
于雷是我完成签到,获得积分10
15秒前
我是老大应助皇甫藏鸟采纳,获得10
16秒前
17秒前
王军发布了新的文献求助20
17秒前
17秒前
18秒前
11111完成签到 ,获得积分10
19秒前
打打应助一人独钓一江秋采纳,获得10
19秒前
天天快乐应助小莫采纳,获得10
21秒前
22秒前
23秒前
小九完成签到 ,获得积分10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789592
求助须知:如何正确求助?哪些是违规求助? 3334534
关于积分的说明 10270460
捐赠科研通 3050998
什么是DOI,文献DOI怎么找? 1674381
邀请新用户注册赠送积分活动 802549
科研通“疑难数据库(出版商)”最低求助积分说明 760761