Dynamic feeding method for aquaculture fish using multi-task neural network

生物 任务(项目管理) 水产养殖 动物科学 商业鱼饲料 生产(经济) 渔业 工程类 微观经济学 系统工程 经济
作者
Yaqian Wang,Xiaoning Yu,Jincun Liu,Dong An,Yaoguang Wei
出处
期刊:Aquaculture [Elsevier BV]
卷期号:551: 737913-737913 被引量:26
标识
DOI:10.1016/j.aquaculture.2022.737913
摘要

In recirculating aquaculture system (RAS), fish feeding is the most important part in production management, which is not only related to economic benefits, but also the key to ensure fish welfare and increase production. At present, in RAS, fish are basically fed either artificially or automatically (quantitatively supply feed at definite time), which can easily result in under-feeding or over-feeding of fish. Therefore, there is an urgent to develop an intelligent method that realizes appropriate feeding according to the actual demands of fish. This research attempts to explore a fish dynamic feeding method based on the multi-task network to meet the automatic adjustment of both the feeding intervals (the time intervals between feeding points in repeated feeding in a single-round) and feeding rates. The specific objectives of this study include two parts: 1) to construct a multi-task network to analyze the feeding activity of cultured fish and monitor the amount of uneaten feed pellets; 2) to design a feeding strategy based on information obtained from the multi-task network that realizes the dynamic adjustment of feeding intervals and the decision of feeding endpoint. The waste of feed pellets can be reduced by dynamically adjusting the feeding intervals, and the under-feeding and over-feeding of fish can be prevented by determining feeding endpoint. The results indicated that the accuracy of feeding activity classification by multi-task network reached 95.44%, and the mean absolute error (MAE) and mean square error (MSE) in uneaten feed pellet counting were 4.80 and 6.75, which indicate that the multi-task network can accurately monitor the fish feeding activity and the amount of uneaten feed pellets. Based on the two monitored information, combined with the feeding strategy, we dynamically adjusted the feeding intervals and determined the feeding endpoint, and then compared the feeding endpoints with manual judgment to verify the feasibility and accuracy of the dynamic feeding method based on the multi-task network. In summary, this research provides a more accurate and efficient solution for the intelligent and precise feeding of cultured fish, and provides the theoretical foundation for the development of intelligent feeding devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浊人发布了新的文献求助10
刚刚
FashionBoy应助栀初采纳,获得10
刚刚
1秒前
眭超阳完成签到 ,获得积分10
1秒前
大喜喜发布了新的文献求助10
2秒前
太渊发布了新的文献求助10
2秒前
litianchi完成签到,获得积分10
2秒前
4秒前
个性的紫安完成签到,获得积分20
5秒前
划水完成签到,获得积分10
5秒前
6秒前
yydzs发布了新的文献求助10
6秒前
7秒前
7秒前
虹虹完成签到,获得积分10
7秒前
肉酱发布了新的文献求助10
10秒前
FXQ123_范发布了新的文献求助10
10秒前
小谢发布了新的文献求助10
10秒前
10秒前
单纯芹菜完成签到,获得积分10
10秒前
10秒前
FXP应助彬子采纳,获得20
11秒前
虹虹发布了新的文献求助10
11秒前
爱学习的小李完成签到 ,获得积分10
12秒前
13秒前
15秒前
cossen完成签到,获得积分10
15秒前
glj完成签到,获得积分10
15秒前
11完成签到,获得积分10
17秒前
Irender发布了新的文献求助10
17秒前
glj发布了新的文献求助10
17秒前
丰富的慕卉完成签到,获得积分10
18秒前
今后应助fff采纳,获得10
19秒前
20秒前
20秒前
20秒前
青羽凌雪完成签到,获得积分10
20秒前
巴特福莱学校完成签到,获得积分10
20秒前
英俊的铭应助Lasum采纳,获得10
20秒前
寇旭晗完成签到 ,获得积分10
20秒前
高分求助中
Many-electron theory of superexchange 1000
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Werkstoffe und Bauweisen in der Fahrzeugtechnik 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833048
求助须知:如何正确求助?哪些是违规求助? 3375470
关于积分的说明 10489248
捐赠科研通 3095117
什么是DOI,文献DOI怎么找? 1704226
邀请新用户注册赠送积分活动 819877
科研通“疑难数据库(出版商)”最低求助积分说明 771661