Stop ordering machine learning algorithms by their explainability! A user-centered investigation of performance and explainability

计算机科学 人工智能 算法 人机交互
作者
Lukas-Valentin Herm,Kai Heinrich,Jonas Wanner,Christian Janiesch
出处
期刊:International Journal of Information Management [Elsevier BV]
卷期号:69: 102538-102538 被引量:106
标识
DOI:10.1016/j.ijinfomgt.2022.102538
摘要

Machine learning algorithms enable advanced decision making in contemporary intelligent systems. Research indicates that there is a tradeoff between their model performance and explainability. Machine learning models with higher performance are often based on more complex algorithms and therefore lack explainability and vice versa. However, there is little to no empirical evidence of this tradeoff from an end user perspective. We aim to provide empirical evidence by conducting two user experiments. Using two distinct datasets, we first measure the tradeoff for five common classes of machine learning algorithms. Second, we address the problem of end user perceptions of explainable artificial intelligence augmentations aimed at increasing the understanding of the decision logic of high-performing complex models. Our results diverge from the widespread assumption of a tradeoff curve and indicate that the tradeoff between model performance and explainability is much less gradual in the end user's perception. This is a stark contrast to assumed inherent model interpretability. Further, we found the tradeoff to be situational for example due to data complexity. Results of our second experiment show that while explainable artificial intelligence augmentations can be used to increase explainability, the type of explanation plays an essential role in end user perception.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研怪咖小白完成签到,获得积分20
1秒前
Tourist应助魏寒冰采纳,获得10
1秒前
1秒前
科研通AI2S应助Kevin Li采纳,获得30
1秒前
刘慧完成签到,获得积分20
2秒前
一氧化二氢完成签到,获得积分10
2秒前
2秒前
michael发布了新的文献求助30
3秒前
脆啵啵马克宝完成签到 ,获得积分10
3秒前
lalala应助俏皮短靴采纳,获得10
5秒前
爆米花应助俏皮短靴采纳,获得10
5秒前
东方雪瑶完成签到,获得积分10
5秒前
5秒前
5秒前
宋浩奇完成签到 ,获得积分10
6秒前
英姑应助郭飒采纳,获得10
6秒前
shenerqing发布了新的文献求助10
6秒前
Sssmmmyy完成签到,获得积分10
7秒前
Jessie发布了新的文献求助10
7秒前
微尘完成签到,获得积分10
8秒前
9秒前
万能图书馆应助温暖白凡采纳,获得10
10秒前
刘标完成签到,获得积分10
10秒前
fafafa123发布了新的文献求助10
11秒前
11秒前
12秒前
qizhixu完成签到,获得积分10
12秒前
qiyun发布了新的文献求助10
13秒前
我是老大应助小太阳采纳,获得10
13秒前
陈冲发布了新的文献求助10
13秒前
田様应助怕孤单的镜子采纳,获得10
14秒前
14秒前
沉默秋寒完成签到,获得积分10
14秒前
Jessie完成签到,获得积分10
15秒前
15秒前
stay发布了新的文献求助30
16秒前
kento发布了新的文献求助30
17秒前
shenerqing完成签到,获得积分10
17秒前
ding应助亚妮艾丝采纳,获得10
19秒前
傲杰传说完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271295
求助须知:如何正确求助?哪些是违规求助? 4429059
关于积分的说明 13787301
捐赠科研通 4307199
什么是DOI,文献DOI怎么找? 2363488
邀请新用户注册赠送积分活动 1359063
关于科研通互助平台的介绍 1322066