Fault Diagnosis of Oil-Immersed Transformer based on TSNE and IBASA- SVM

支持向量机 变压器 计算机科学 嵌入 溶解气体分析 变压器油 电力系统 算法 模式识别(心理学) 人工智能 工程类 功率(物理) 电气工程 量子力学 物理 电压
作者
You Guo,Wenqing Feng,Guoyong Zhang,Yi Ouyang,Xinyu Pi,Lifu He,Jing Luo,Lingzhi Yi
出处
期刊:Recent Patents on Mechanical Engineering [Bentham Science Publishers]
卷期号:15 (5): 504-514 被引量:6
标识
DOI:10.2174/2212797615666220622093515
摘要

Background: With the rapid development of power system, oil-immersed transformers are widely used in the substation and distribution system. The faults of oil-immersed transformers are large threat to the power system. Therefore, it is significant that the faults of oil-immersed transformers can be diagnosed accurately. Objective: To accurately diagnose the faults of oil-immersed transformers through machine learning methods and swarm intelligent algorithms. Methods: To accurately diagnose the faults of oil-immersed transformers, a fault diagnosis method based on T-distributed stochastic neighbor embedding and support vector machine is proposed. The improved beetle antennae search algorithm is used to optimize the parameters of support vector machine. Firstly, the non-coding ratio method is used to obtain nine-dimensional characteristic indices. Secondly, the original nine-dimensional data are reduced to three-dimensional by T-distributed stochastic neighbor embedding. Lastly, the data after dimensionality reduction are used as the input of the support vector machine optimized by improved beetle antennae search algorithm and the fault types of transformers can be diagnosed. Results: The accuracy rate is 94.53% and the operation time is about 1.88s. The results indicate that the method proposed by this paper is reasonable. Conclusion: The experimental results show that the method proposed by this paper has a high accuracy rate and low operation time. Mixed faults that are difficult to diagnose also can be diagnosed by this paper's method. In the era of big data, there is a lot of data of transformer, so the method proposed in this paper has certain engineering significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
劳资懒得起网名完成签到,获得积分10
刚刚
可爱的沛珊完成签到,获得积分10
刚刚
稳住完成签到,获得积分10
刚刚
醉熏的恋风完成签到,获得积分20
刚刚
格桑花发布了新的文献求助10
1秒前
1秒前
戴饱饱加油完成签到,获得积分10
1秒前
英姑应助活泼的觅云采纳,获得10
1秒前
NICCO发布了新的文献求助10
1秒前
1秒前
1秒前
英俊的铭应助shine采纳,获得10
2秒前
大力的飞莲完成签到,获得积分10
3秒前
nnnkkl发布了新的文献求助10
3秒前
Mr杨完成签到,获得积分10
3秒前
杰杰杰杰完成签到,获得积分10
3秒前
DMY完成签到,获得积分20
4秒前
仙乐完成签到,获得积分10
4秒前
Qian完成签到,获得积分10
4秒前
打打应助土拨鼠采纳,获得10
4秒前
Pumpkin完成签到,获得积分10
4秒前
文艺不凡完成签到,获得积分10
4秒前
科研通AI5应助虚心念桃采纳,获得10
4秒前
萱1988完成签到,获得积分10
5秒前
Raymon33完成签到,获得积分10
5秒前
整齐百褶裙完成签到 ,获得积分10
5秒前
默认用户名完成签到,获得积分10
5秒前
马外奥完成签到,获得积分10
5秒前
bc应助奇奇云采纳,获得30
5秒前
奶黄包完成签到 ,获得积分10
6秒前
布丁完成签到,获得积分10
6秒前
6秒前
景行行止完成签到,获得积分10
6秒前
njzqs完成签到,获得积分10
6秒前
未卜发布了新的文献求助10
7秒前
Pyrene发布了新的文献求助10
7秒前
糟糕的铁锤完成签到,获得积分0
7秒前
发nature完成签到 ,获得积分10
7秒前
科研渣渣完成签到,获得积分10
7秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788621
求助须知:如何正确求助?哪些是违规求助? 3333855
关于积分的说明 10265174
捐赠科研通 3049972
什么是DOI,文献DOI怎么找? 1673781
邀请新用户注册赠送积分活动 802206
科研通“疑难数据库(出版商)”最低求助积分说明 760549