A Deep Learning‐Based Inventory Management and Demand Prediction Optimization Method for Anomaly Detection

计算机科学 异常检测 异常(物理) 人工智能 深度学习 机器学习 数据挖掘 运筹学 凝聚态物理 物理 工程类
作者
Chuning Deng,Yongji Liu
出处
期刊:Wireless Communications and Mobile Computing [Hindawi Limited]
卷期号:2021 (1) 被引量:53
标识
DOI:10.1155/2021/9969357
摘要

The rapid development of emerging technologies such as machine learning and data mining promotes a lot of smart applications, e.g., Internet of things (IoT). The supply chain management and communication are a key research direction in the IoT environment, while the inventory management (IM) has increasingly become a core part of the whole life cycle management process of the supply chain. However, the current situations of a long supply chain life cycle, complex supply chain management, and frequently changing user demands all lead to a sharp rise in logistics and communication cost. Hence, as the core part of the supply chain, effective and predictable IM becomes particularly important. In this way, this work intends to reduce the cost during the life cycle of the supply chain by optimizing the IM process. Specifically, the IM process is firstly formulated as a mathematical model, in which the objective is to jointly minimize the logistic cost and maximize the profit. On this basis, a deep inventory management (DIM) method is proposed to address this model by using the long short‐term memory (LSTM) theory of deep learning (DL). In particular, DIM transforms the time series problem into a supervised learning one and it is trained using the back propagation pattern, such that the training process can be finished efficiently. The experimental results show that the average inventory demand prediction accuracy of DIM exceeds about 80%, which can reduce the inventory cost by about 25% compared with the other state‐of‐the‐art methods and detect the anomaly inventory actions quickly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼鱼鱼鱼完成签到 ,获得积分10
1秒前
王继完成签到,获得积分10
3秒前
simon666完成签到,获得积分10
3秒前
神奇红桃三完成签到,获得积分10
4秒前
卡片完成签到,获得积分10
4秒前
卡卡西完成签到,获得积分10
6秒前
我是老大应助King16采纳,获得10
7秒前
愤怒的水绿完成签到,获得积分10
7秒前
hahaha6789y完成签到,获得积分10
8秒前
Mo完成签到,获得积分10
10秒前
maybe完成签到,获得积分10
10秒前
mickaqi完成签到 ,获得积分10
10秒前
surlamper完成签到,获得积分10
11秒前
sheep完成签到,获得积分10
11秒前
hahaha2完成签到,获得积分10
11秒前
秦含光完成签到,获得积分10
11秒前
Tom2077完成签到,获得积分10
12秒前
spider534完成签到,获得积分10
13秒前
徐彬荣完成签到,获得积分10
13秒前
霡霂完成签到,获得积分10
13秒前
量子咸鱼K完成签到,获得积分10
14秒前
hahaha1完成签到,获得积分10
14秒前
Adamcssy19完成签到,获得积分10
14秒前
PaperCrane完成签到,获得积分10
14秒前
xzy998应助科研通管家采纳,获得10
15秒前
xzy998应助科研通管家采纳,获得10
15秒前
BlueKitty完成签到,获得积分10
15秒前
xzy998应助科研通管家采纳,获得10
15秒前
fate完成签到,获得积分10
15秒前
shhoing应助科研通管家采纳,获得10
15秒前
JJJ完成签到,获得积分0
16秒前
widesky777完成签到 ,获得积分10
19秒前
甜甜以云完成签到,获得积分10
20秒前
piupiu完成签到,获得积分10
25秒前
啊哈啊哈额完成签到,获得积分10
25秒前
coffee完成签到,获得积分10
29秒前
姬鲁宁完成签到 ,获得积分10
38秒前
电子屎壳郎完成签到 ,获得积分10
43秒前
DingShicong完成签到 ,获得积分10
43秒前
淡然以柳完成签到 ,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561730
求助须知:如何正确求助?哪些是违规求助? 4646763
关于积分的说明 14678983
捐赠科研通 4588183
什么是DOI,文献DOI怎么找? 2517378
邀请新用户注册赠送积分活动 1490657
关于科研通互助平台的介绍 1461765