已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Continuous Model for Designing Corridor Systems with Modular Autonomous Vehicles Enabling Station-wise Docking

模块化设计 解算器 离散化 数学优化 计算机科学 启发式 航程(航空) 工程类 数学 航空航天工程 操作系统 数学分析
作者
Zhiwei Chen,Xiaopeng Li,Xiaobo Qu
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:56 (1): 1-30 被引量:53
标识
DOI:10.1287/trsc.2021.1085
摘要

The “asymmetry” between spatiotemporally varying passenger demand and fixed-capacity transportation supply has been a long-standing problem in urban mass transportation (UMT) systems around the world. The emerging modular autonomous vehicle (MAV) technology offers us an opportunity to close the substantial gap between passenger demand and vehicle capacity through station-wise docking and undocking operations. However, there still lacks an appropriate approach that can solve the operational design problem for UMT corridor systems with MAVs efficiently. To bridge this methodological gap, this paper proposes a continuum approximation (CA) model that can offer near-optimal solutions to the operational design for MAV-based transit corridors very efficiently. We investigate the theoretical properties of the optimal solutions to the investigated problem in a certain (yet not uncommon) case. These theoretical properties allow us to estimate the seat demand of each time neighborhood with the arrival demand curves, which recover the “local impact” property of the investigated problem. With the property, a CA model is properly formulated to decompose the original problem into a finite number of subproblems that can be analytically solved. A discretization heuristic is then proposed to convert the analytical solution from the CA model to feasible solutions to the original problem. With two sets of numerical experiments, we show that the proposed CA model can achieve near-optimal solutions (with gaps less than 4% for most cases) to the investigated problem in almost no time (less than 10 ms) for large-scale instances with a wide range of parameter settings (a commercial solver may even not obtain a feasible solution in several hours). The theoretical properties are verified, and managerial insights regarding how input parameters affect system performance are provided through these numerical results. Additionally, results also reveal that, although the CA model does not incorporate vehicle repositioning decisions, the timetabling decisions obtained by solving the CA model can be easily applied to obtain near-optimal repositioning decisions (with gaps less than 5% in most instances) very efficiently (within 10 ms). Thus, the proposed CA model provides a foundation for developing solution approaches for other problems (e.g., MAV repositioning) with more complex system operation constraints whose exact optimal solution can hardly be found with discrete modeling methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ly完成签到,获得积分10
1秒前
细心的斩发布了新的文献求助10
3秒前
情怀应助crx采纳,获得10
3秒前
高产佩奇完成签到,获得积分20
3秒前
qqqqqq发布了新的文献求助10
4秒前
ly发布了新的文献求助10
5秒前
田様应助shane采纳,获得10
7秒前
zyhahaha完成签到,获得积分10
8秒前
细心的斩完成签到,获得积分10
9秒前
10秒前
13秒前
美满的太英完成签到,获得积分10
14秒前
共享精神应助凤凰院凶真采纳,获得10
15秒前
cnkly完成签到,获得积分0
15秒前
小聪向前冲完成签到 ,获得积分10
16秒前
七里香完成签到 ,获得积分10
17秒前
大模型应助小米采纳,获得10
18秒前
18秒前
20秒前
轨迹应助细腻的冷卉采纳,获得10
20秒前
dereje完成签到,获得积分10
21秒前
李爱国应助二马三乡采纳,获得10
22秒前
Mr_Qiu发布了新的文献求助10
23秒前
森森完成签到,获得积分10
24秒前
你嵙这个期刊没买应助H语采纳,获得10
24秒前
25秒前
26秒前
26秒前
chenhoe1212发布了新的文献求助10
27秒前
31秒前
Passer完成签到 ,获得积分10
32秒前
量子星尘发布了新的文献求助10
33秒前
无极微光应助123b采纳,获得20
33秒前
34秒前
楠木木完成签到 ,获得积分10
35秒前
36秒前
斯文败类应助吉吉采纳,获得10
38秒前
40秒前
41秒前
momo发布了新的文献求助10
43秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754116
求助须知:如何正确求助?哪些是违规求助? 5484707
关于积分的说明 15379562
捐赠科研通 4892870
什么是DOI,文献DOI怎么找? 2631526
邀请新用户注册赠送积分活动 1579531
关于科研通互助平台的介绍 1535246