Lipid Nanoparticle–mRNA Formulations for Therapeutic Applications

连接器 糖脂 化学 体内 体外 小分子 纳米颗粒 纳米技术 计算生物学 生物化学 生物 材料科学 计算机科学 生物技术 操作系统
作者
Chang Wang,Yuebao Zhang,Yizhou Dong
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:54 (23): 4283-4293 被引量:132
标识
DOI:10.1021/acs.accounts.1c00550
摘要

ConspectusAfter decades of extensive fundamental studies and clinical trials, lipid nanoparticles (LNPs) have demonstrated effective mRNA delivery such as the Moderna and Pfizer-BioNTech vaccines fighting against COVID-19. Moreover, researchers and clinicians have been investigating mRNA therapeutics for a variety of therapeutic indications including protein replacement therapy, genome editing, and cancer immunotherapy. To realize these therapeutics in the clinic, there are many formidable challenges. First, novel delivery systems such as LNPs with high delivery efficiency and low toxicity need to be developed for different cell types. Second, mRNA molecules need to be engineered for improved pharmaceutical properties. Lastly, the LNP–mRNA nanoparticle formulations need to match their therapeutic applications.In this Account, we summarize our recent advances in the design and development of various classes of lipids and lipid derivatives, which can be formulated with multiple types of mRNA molecules to treat diverse diseases. For example, we conceived a series of ionizable lipid-like molecules based on the structures of a benzene core, an amide linker, and hydrophobic tails. We identified N1,N3,N5-tris(3-(didodecylamino)propyl)benzene-1,3,5-tricarboxamide (TT3) as a lead compound for mRNA delivery both in vitro and in vivo. Moreover, we tuned the biodegradability of these lipid-like molecules by introducing branched ester or linear ester chains. Meanwhile, inspired by biomimetic compounds, we synthesized vitamin-derived lipids, chemotherapeutic conjugated lipids, phospholipids, and glycolipids. These scaffolds greatly broaden the chemical space of ionizable lipids for mRNA delivery. In another section, we highlight our efforts on the research direction of mRNA engineering. We previously optimized mRNA chemistry using chemically-modified nucleotides to increase the protein expression, such as pseudouridine (ψ), 5-methoxyuridine (5moU), and N1-methylpseudouridine (me1ψ). Also, we engineered the sequences of mRNA 5′ untranslated regions (5′-UTRs) and 3′ untranslated regions (3′-UTRs), which dramatically enhanced protein expression. With the progress of LNP development and mRNA engineering, we consolidate these technologies and apply them to treat diseases such as genetic disorders, infectious diseases, and cancers. For instance, TT3 and its analog-derived lipid-like nanoparticles can effectively deliver factor IX or VIII mRNA and recover the clotting activity in hemophilia mouse models. Engineered mRNAs encoding SARS-CoV-2 antigens serve well as vaccine candidates against COVID-19. Vitamin-derived lipid nanoparticles loaded with antimicrobial peptide-cathepsin B mRNA enable adoptive macrophage transfer to treat multidrug resistant bacterial sepsis. Biomimetic lipids such as phospholipids formulated with mRNAs encoding costimulatory receptors lead to enhanced cancer immunotherapy.Overall, lipid–mRNA nanoparticle formulations have considerably benefited public health in the COVID-19 pandemic. To expand their applications in clinical use, research work from many disciplines such as chemistry, engineering, materials, pharmaceutical sciences, and medicine need to be integrated. With these collaborative efforts, we believe that more and more lipid–mRNA nanoparticle formulations will enter the clinic in the near future and benefit human health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿七完成签到,获得积分10
刚刚
mieao发布了新的文献求助10
刚刚
一颗馒头发布了新的文献求助10
刚刚
1秒前
研友_VZG7GZ应助靓丽谷南采纳,获得10
1秒前
Hello应助斯文明杰采纳,获得10
3秒前
zho发布了新的文献求助10
3秒前
SciGPT应助khurram采纳,获得10
4秒前
今天只做一件事应助khurram采纳,获得10
4秒前
传统的斓完成签到,获得积分10
8秒前
科研通AI5应助花花521采纳,获得10
8秒前
写不出来发布了新的文献求助10
10秒前
12秒前
彭于晏应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
Cherish应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
joker_k应助科研通管家采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
14秒前
情怀应助科研通管家采纳,获得10
14秒前
qiao应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
joker_k应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
望除应助科研通管家采纳,获得10
14秒前
14秒前
15秒前
15秒前
15秒前
16秒前
17秒前
longge233233完成签到,获得积分10
19秒前
花花521发布了新的文献求助10
21秒前
科研通AI2S应助爬不起来采纳,获得10
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778351
求助须知:如何正确求助?哪些是违规求助? 3323953
关于积分的说明 10216860
捐赠科研通 3039279
什么是DOI,文献DOI怎么找? 1667919
邀请新用户注册赠送积分活动 798427
科研通“疑难数据库(出版商)”最低求助积分说明 758385