Analyzing fusion of regularization techniques in the deep learning‐based intrusion detection system

过度拟合 计算机科学 正规化(语言学) 人工智能 机器学习 卷积神经网络 人工神经网络 超参数 数据挖掘
作者
Ankit Thakkar,Ritika Lohiya
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:36 (12): 7340-7388 被引量:27
标识
DOI:10.1002/int.22590
摘要

The surge of constantly evolving network attacks can be addressed by designing an effective and efficient Intrusion Detection System (IDS). Various Deep Learning (DL) techniques have been used for designing intelligent IDS. However, DL techniques face an issue of overfitting because of complex network structure and high-dimensional data sets. Dropout and regularization are two competently perceived concepts of DL used for handling overfitting issue to enhance the performance of DL techniques. In this paper, we aim to apply fusion of various regularization techniques, namely, L1, L2, and elastic net regularization, with dropout regularization technique, for analyzing and enhancing the performance of Deep Neural Network (DNN)-based IDS. Experiments are performed using NSL-KDD, UNSW_NB-15, and CIC-IDS-2017 data sets. The value of dropout probability is derived using GridSearchCV-based hyperparameter optimization technique. Moreover, the paper also implements state-of-the-art Machine Learning techniques for the performance comparison. Apart from DNN, we have also presented performance analysis of various DL techniques, namely, Recurrent Neural Network, Long Short-Term Memory, Gated Recurrent Unit, and Convolutional Neural Network using a fusion of regularization techniques for intrusion detection and classification. The empirical study shows that among the techniques implemented, dropout has proved to be more effective compared with L1, L2, and elastic net regularization. Moreover, fusion of dropout with other regularization techniques achieved better results compared with L1 regularization, L2 regularization, and elastic net regularization, individually. The techniques implemented for DNN-based IDS are also statistically tested using the Wilcoxon signed-rank test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长生发布了新的文献求助10
刚刚
刚刚
3秒前
显赫一世发布了新的文献求助10
3秒前
芒琪完成签到 ,获得积分10
5秒前
6秒前
wen发布了新的文献求助100
7秒前
科研通AI5应助听话的捕采纳,获得10
7秒前
十三完成签到,获得积分10
8秒前
科研通AI2S应助屈屈采纳,获得10
9秒前
11秒前
ONION完成签到,获得积分10
11秒前
11秒前
显赫一世完成签到,获得积分10
12秒前
13秒前
lsx完成签到,获得积分10
13秒前
慕青应助xxx采纳,获得10
15秒前
简单发布了新的文献求助10
18秒前
明理听莲发布了新的文献求助10
18秒前
科研通AI5应助dzps采纳,获得10
18秒前
19秒前
飞快的代天完成签到,获得积分10
19秒前
hi完成签到,获得积分10
20秒前
科研通AI2S应助安安采纳,获得10
21秒前
23秒前
顺利凌寒发布了新的文献求助10
24秒前
在水一方应助lumin采纳,获得10
25秒前
26秒前
29秒前
华仔应助明理听莲采纳,获得10
30秒前
Zero140发布了新的文献求助10
30秒前
冰魂应助小远采纳,获得10
30秒前
怡然晓灵完成签到,获得积分10
33秒前
顺利凌寒完成签到,获得积分10
33秒前
33秒前
SYLH应助安安采纳,获得20
33秒前
SciGPT应助小黄采纳,获得10
33秒前
充电宝应助lee采纳,获得10
34秒前
jersey发布了新的文献求助10
34秒前
35秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802585
求助须知:如何正确求助?哪些是违规求助? 3348257
关于积分的说明 10337318
捐赠科研通 3064235
什么是DOI,文献DOI怎么找? 1682495
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 764010