Efficient image segmentation based on deep learning for mineral image classification

图像分割 人工智能 分割 计算机科学 尺度空间分割 基于分割的对象分类 模式识别(心理学) 区域增长 图像(数学) 基于最小生成树的图像分割 计算机视觉
作者
Yang Liu,Zelin Zhang,Xiang Liu,Lei Wang,Xuhui Xia
出处
期刊:Advanced Powder Technology [Elsevier BV]
卷期号:32 (10): 3885-3903 被引量:126
标识
DOI:10.1016/j.apt.2021.08.038
摘要

Mineral image segmentation plays a vital role in the realization of machine vision based intelligent ore sorting equipment. However, the existing image segmentation methods still cannot effectively solve the problem of adhesion and overlap between mineral particles, and the segmentation performance of small and irregular particles still needs to be improved. To overcome these bottlenecks, we propose a deep learning based image segmentation method to segment the key areas in mineral images using morphological transformation to process mineral image masks. This investigation explores four aspects of the deep learning-based mineral image segmentation model, including backbone selection, module configuration, loss function construction, and its application in mineral image classification. Specifically, referring to the designs of U-Net, FCN, Seg Net, PSP Net, and DeepLab Net, this experiment uses different backbones as Encoder to building ten mineral image segmentation models with different layers, structures, and sampling methods. Simultaneously, we propose a new loss function suitable for mineral image segmentation and compare CNNs-based segmentation models' training performance under different loss functions. The experiment results show that the proposed mineral image segmentation has excellent segmentation performance, effectively solves adhesion and overlap between adjacent particles without affecting the classification accuracy. By using the Mobile Net as backbone, the PSP Net and DeepLab can achieve a high segmentation performance in mineral image segmentation tasks, and the 15 × 15 is the most suitable size for erosion element structure to process the mask images of the segmentation models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
依依不舍完成签到,获得积分10
刚刚
1秒前
HUO发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
6秒前
啦啦啦完成签到,获得积分10
8秒前
lizhiqian2024发布了新的文献求助30
8秒前
雨雨雨雨发布了新的文献求助10
9秒前
善学以致用应助kyx采纳,获得10
9秒前
田様应助清秀的语堂采纳,获得10
10秒前
11秒前
精明的忆灵完成签到,获得积分10
12秒前
12秒前
陶醉大侠完成签到,获得积分10
12秒前
14秒前
14秒前
慕青应助YJ采纳,获得10
15秒前
15秒前
小丸子发布了新的文献求助10
15秒前
16秒前
畜牧笑笑完成签到,获得积分10
16秒前
16秒前
香酥板栗完成签到,获得积分10
17秒前
邓云瀚发布了新的文献求助10
18秒前
清秀的语堂完成签到,获得积分20
18秒前
灵巧的导师完成签到,获得积分10
18秒前
小沈发布了新的文献求助10
20秒前
kyx发布了新的文献求助10
20秒前
Luffa完成签到,获得积分10
20秒前
22秒前
朱笑白完成签到 ,获得积分10
22秒前
23秒前
23秒前
23秒前
研友_VZG7GZ应助shasha采纳,获得10
25秒前
小蘑菇应助lizhiqian2024采纳,获得10
25秒前
上官若男应助lizhiqian2024采纳,获得10
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791065
求助须知:如何正确求助?哪些是违规求助? 3335765
关于积分的说明 10276878
捐赠科研通 3052348
什么是DOI,文献DOI怎么找? 1675100
邀请新用户注册赠送积分活动 803102
科研通“疑难数据库(出版商)”最低求助积分说明 761066