The Effect of The COVID-19 Pandemic and Google Trends on the Forecasting of International Tourist Arrivals in Indonesia

自回归积分移动平均 2019年冠状病毒病(COVID-19) 大流行 旅游 变量(数学) 计算机科学 地理 产品(数学) 业务 计量经济学 运筹学 经济 工程类 时间序列 数学 机器学习 数学分析 病理 考古 医学 传染病(医学专业) 疾病 几何学
作者
Suci Karunia Prilistya,Adhistya Erna Permanasari,Silmi Fauziati
出处
期刊:2017 IEEE Region 10 Symposium (TENSYMP) 卷期号:: 1-8 被引量:6
标识
DOI:10.1109/tensymp52854.2021.9550838
摘要

The tourism sector is a strategic industrial pillar that contributes to a country's economy. In future tourism development efforts, accurate tourism forecasting is needed. Despite its importance, tourism is also one of the most vulnerable industries. Since COVID-19 was declared a pandemic by WHO, social distancing has significantly impacted tourism development. It can be explored more deeply by including the COVID-19 pandemic in the forecast. In addition, it is necessary to include Google Trends, which is a product of the largest search engine in the world and is proven to improve forecasting accuracy. This study aimed to analyze the effect of the COVID-19 pandemic and search query data on the forecasting of foreign tourists to Indonesia. The methods used are ARIMAX and SARIMAX with the endogenous variables of foreign tourist visits to Indonesia. Meanwhile, the exogenous variables are Google Trends search query data and the COVID-19 pandemic. The performance of the two methods is then compared with the ARIMA and SARIMA methods, which do not use exogenous variables in forecasting. This study indicates that the exogenous variables increase the forecasting accuracy. Forecasting with the best accuracy is obtained by the SARIMAX method with the exogenous variable Google Trends. This method outperformed the other methods with MAPE = 5.4556, RMSE = 11041.0510 and MAE = 8479.6116. In addition, in this study, a framework was created to build a composite search index for Google Trends to improve forecasting accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xx应助LL采纳,获得10
1秒前
滞光完成签到,获得积分10
1秒前
2秒前
王孝松发布了新的文献求助10
2秒前
肉肉发布了新的文献求助10
3秒前
深情安青应助饺子王采纳,获得10
4秒前
qingzhou发布了新的文献求助10
4秒前
ggghost完成签到 ,获得积分10
5秒前
李健应助结实的曼凝采纳,获得30
5秒前
DDDDD发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
wanci应助孝顺的颜采纳,获得10
7秒前
高丽娜发布了新的文献求助10
8秒前
李健应助Adzuki0812采纳,获得10
11秒前
11秒前
12秒前
六花泷发布了新的文献求助10
12秒前
风华笔墨发布了新的文献求助10
13秒前
14秒前
小酷孩发布了新的文献求助10
15秒前
15秒前
酷波er应助朴实的墨镜采纳,获得10
16秒前
甜菜猪完成签到,获得积分10
16秒前
RNAPW发布了新的文献求助200
17秒前
星辰大海应助又欠采纳,获得10
17秒前
充电宝应助刘喜宇采纳,获得10
18秒前
20秒前
愉快的鸭完成签到,获得积分10
20秒前
Cora完成签到,获得积分10
21秒前
21秒前
六花泷完成签到,获得积分20
21秒前
23秒前
老实的小蚂蚁应助lw采纳,获得10
23秒前
23秒前
郭嘉仪发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助150
24秒前
愉快的鸭发布了新的文献求助10
25秒前
qwf发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5088254
求助须知:如何正确求助?哪些是违规求助? 4303219
关于积分的说明 13410735
捐赠科研通 4129025
什么是DOI,文献DOI怎么找? 2261095
邀请新用户注册赠送积分活动 1265234
关于科研通互助平台的介绍 1199686