已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Graph-based multi-label disease prediction model learning from medical data and domain knowledge

计算机科学 图形 领域知识 领域(数学分析) 机器学习 人工智能 疾病 知识图 医学知识 梅德林 数据科学 医学 理论计算机科学 病理 医学教育 法学 政治学 数学分析 数学
作者
Thuan Pham,Xiaohui Tao,Ji Zhang,Jianming Yong,Yuefeng Li,Haoran Xie
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:235: 107662-107662 被引量:47
标识
DOI:10.1016/j.knosys.2021.107662
摘要

In recent years, the means of disease diagnosis and treatment have been improved remarkably, along with the continuous development of technology and science. Researchers have spent tremendous time and effort to build models that aim to assist medical practitioners in decision-making support. However, one of the greatest challenges remains how to identify the connection between different diseases. This study aims to discover the relationship between diseases and symptoms to predict potential diseases for patients. Considering it a multi-label classification problem, the study proposed a new multi-disease prediction model learning from NHANES, an extensive health related dataset, and MEDLINE, a corpus with medical domain knowledge. A heterogeneous information graph is firstly constructed and then populated using medical domain knowledge discovered from MEDLINE. The knowledge graph is analysed for clarification of the relevancy within nodes in positive or negative space, helping to access to the correlation amongst multiple diseases and their symptoms. A multi-label disease prediction model is then developed adopting the medical domain knowledge graph. Empirical experiments are conducted to evaluate the proposed model. The experimental results show that the performance of the proposed model surpassed state-of-the-art related works representing the mainstreams of multi-label classification. This study contributes to the medical community with a novel model for multi-disease prediction and represents a new endeavour on multi-label classification using knowledge graphs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐续完成签到 ,获得积分10
刚刚
自信书文完成签到 ,获得积分10
1秒前
3秒前
3秒前
3秒前
明理宛秋完成签到 ,获得积分10
3秒前
儒雅的念烟完成签到 ,获得积分10
3秒前
科研王帝同学完成签到 ,获得积分10
3秒前
温馨家园完成签到 ,获得积分10
3秒前
4秒前
4秒前
5秒前
1793480753完成签到,获得积分10
5秒前
5秒前
9秒前
fduqyy发布了新的文献求助10
9秒前
导师求放过完成签到,获得积分0
9秒前
8R60d8应助zhou采纳,获得10
9秒前
10秒前
YY完成签到 ,获得积分10
10秒前
李烁发布了新的文献求助10
12秒前
乐乐应助从容问寒采纳,获得10
12秒前
12秒前
宇宇完成签到 ,获得积分10
16秒前
海鸥别叫了完成签到 ,获得积分10
16秒前
17秒前
开朗白山完成签到,获得积分10
19秒前
20秒前
dream完成签到 ,获得积分10
20秒前
Akim应助英勇的涵柳采纳,获得10
20秒前
星辰大海应助娄心昊采纳,获得10
22秒前
wdy发布了新的文献求助10
22秒前
十三号失眠完成签到 ,获得积分10
22秒前
Babe1934发布了新的文献求助10
22秒前
23秒前
领导范儿应助浩然山河采纳,获得10
24秒前
PDE完成签到,获得积分10
24秒前
煜清清完成签到 ,获得积分10
24秒前
brk发布了新的文献求助10
26秒前
自觉的枕头完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476130
求助须知:如何正确求助?哪些是违规求助? 4577668
关于积分的说明 14362765
捐赠科研通 4505632
什么是DOI,文献DOI怎么找? 2468756
邀请新用户注册赠送积分活动 1456392
关于科研通互助平台的介绍 1430068