Hybrid classical–quantum Convolutional Neural Network for stenosis detection in X-ray coronary angiography

Softmax函数 卷积神经网络 计算机科学 背景(考古学) 放射科 狭窄 人工智能 模式识别(心理学) 数学 医学 算法 生物 古生物学
作者
Emmanuel Ovalle-Magallanes,Juan Gabriel Avina–Cervantes,Ivan Cruz‐Aceves,José Ruiz-Pinales
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:189: 116112-116112 被引量:62
标识
DOI:10.1016/j.eswa.2021.116112
摘要

Abstract Despite advances in Deep Learning, the Convolutional Neural Networks methods still manifest limitations in medical applications because datasets are usually restricted in the number of samples or include poorly contrasted images. Such a case is found in stenosis detection using X-rays coronary angiography. In this study, the emerging field of quantum computing is applied in the context of hybrid neural networks. So, a hybrid transfer-learning paradigm is used for stenosis detection, where a quantum network drives and improves the performance of a pre-trained classical network. An intermediate layer between the classical and quantum network post-processes the classical features by mapping them into a hypersphere of fixed radius through a hyperbolic tangent function. Next, these normalized features are processed in the quantum network, and through a SoftMax function, the class probabilities are obtained: stenosis and non-stenosis. Furthermore, a distributed variational quantum circuit is implemented to split the data into multiple quantum circuits within the quantum network, improving the training time without compromising the stenosis detection performance. The proposed method is evaluated on a small X-ray coronary angiography dataset containing 250 image patches (50%–50% of positive and negative stenosis cases). The hybrid classical-quantum network significantly outperformed the classical network. Evaluation results showed a boost concerning the classical transfer learning paradigm in the accuracy of 9%, recall of 20%, and F 1 -score of 11%, reaching 91.8033%, 94.9153%, and 91.8033%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助陶军辉采纳,获得10
刚刚
2秒前
852应助颠颠的哦采纳,获得10
2秒前
kk完成签到,获得积分10
3秒前
qnmlgbd55完成签到,获得积分10
3秒前
4秒前
丫头完成签到,获得积分20
4秒前
方梦坤完成签到,获得积分10
4秒前
5秒前
小明发布了新的文献求助10
5秒前
wdasdas发布了新的文献求助10
6秒前
上官若男应助liwenhao采纳,获得10
6秒前
powell应助斯文奇迹采纳,获得10
7秒前
7秒前
zfp完成签到,获得积分10
8秒前
寒冷依秋发布了新的文献求助10
9秒前
Wells完成签到,获得积分10
9秒前
科研通AI6应助123采纳,获得10
9秒前
兔子应助zhenpeng8888采纳,获得10
10秒前
脑洞疼应助陶军辉采纳,获得10
10秒前
Evelyn应助方梦坤采纳,获得10
10秒前
无敌发布了新的文献求助10
10秒前
快乐难敌发布了新的文献求助10
11秒前
在水一方应助su采纳,获得10
11秒前
标致的问晴完成签到,获得积分10
11秒前
eee完成签到 ,获得积分10
11秒前
11秒前
NorthWang完成签到,获得积分10
12秒前
乐乐应助小程同学采纳,获得10
13秒前
张婧媛完成签到,获得积分10
13秒前
14秒前
哈罗发布了新的文献求助10
14秒前
zzzzzz关注了科研通微信公众号
15秒前
Hello应助李十一采纳,获得10
15秒前
领导范儿应助xy采纳,获得10
15秒前
陈惠琳完成签到,获得积分10
15秒前
15秒前
kai9712完成签到,获得积分10
15秒前
小明完成签到,获得积分10
16秒前
酒吧舞男茜茜妈完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4758849
求助须知:如何正确求助?哪些是违规求助? 4100571
关于积分的说明 12688058
捐赠科研通 3815451
什么是DOI,文献DOI怎么找? 2106365
邀请新用户注册赠送积分活动 1131056
关于科研通互助平台的介绍 1009404