Support Vector Machines in Big Data Classification: A Systematic Literature Review

支持向量机 计算机科学 大数据 机器学习 人工智能 可扩展性 数据预处理 预处理器 数据挖掘 数据库
作者
Mohammad Hassan Almaspoor,Ali Asghar Safaei,Afshin Salajegheh,Behrouz Minaei‐Bidgoli
出处
期刊:Research Square - Research Square 被引量:7
标识
DOI:10.21203/rs.3.rs-663359/v1
摘要

Abstract Classification is one of the most important and widely used issues in machine learning, the purpose of which is to create a rule for grouping data to sets of pre-existing categories is based on a set of training sets. Employed successfully in many scientific and engineering areas, the Support Vector Machine (SVM) is among the most promising methods of classification in machine learning. With the advent of big data, many of the machine learning methods have been challenged by big data characteristics. The standard SVM has been proposed for batch learning in which all data are available at the same time. The SVM has a high time complexity, i.e., increasing the number of training samples will intensify the need for computational resources and memory. Hence, many attempts have been made at SVM compatibility with online learning conditions and use of large-scale data. This paper focuses on the analysis, identification, and classification of existing methods for SVM compatibility with online conditions and large-scale data. These methods might be employed to classify big data and propose research areas for future studies. Considering its advantages, the SVM can be among the first options for compatibility with big data and classification of big data. For this purpose, appropriate techniques should be developed for data preprocessing in order to covert data into an appropriate form for learning. The existing frameworks should also be employed for parallel and distributed processes so that SVMs can be made scalable and properly online to be able to handle big data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
张章完成签到,获得积分20
1秒前
梅梅发布了新的文献求助30
1秒前
烟花应助艾七七采纳,获得10
3秒前
3秒前
3秒前
任婷发布了新的文献求助10
4秒前
5秒前
李大锤完成签到,获得积分10
5秒前
halabouqii发布了新的文献求助10
5秒前
小尾巴完成签到,获得积分20
6秒前
6秒前
7秒前
隐形曼青应助qqa采纳,获得10
9秒前
科研通AI5应助lull采纳,获得10
9秒前
11秒前
美满的小甜瓜完成签到,获得积分10
11秒前
11秒前
共享精神应助呆萌幼晴采纳,获得10
13秒前
13秒前
15秒前
15秒前
外向小刺猬完成签到,获得积分20
15秒前
winew完成签到 ,获得积分10
16秒前
siijjfjjf完成签到 ,获得积分10
16秒前
17秒前
寜1发布了新的文献求助10
17秒前
Zzz完成签到,获得积分10
18秒前
18秒前
growl发布了新的文献求助10
18秒前
19秒前
halabouqii完成签到,获得积分10
19秒前
20秒前
20秒前
qqa发布了新的文献求助10
21秒前
亚亚发布了新的文献求助10
21秒前
星星发布了新的文献求助10
21秒前
Orange应助lorentzh采纳,获得10
21秒前
开心的夏蓉完成签到,获得积分10
21秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Handbook on the Toxicology of Metals 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839118
求助须知:如何正确求助?哪些是违规求助? 3381536
关于积分的说明 10518603
捐赠科研通 3100922
什么是DOI,文献DOI怎么找? 1707861
邀请新用户注册赠送积分活动 821988
科研通“疑难数据库(出版商)”最低求助积分说明 773084